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Abstract The boreal summer Asian monsoon has been evaluated in 25 Coupled Model 50	  
Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late 20th 51	  
Century. Diagnostics and skill metrics have been calculated to assess the time-mean, 52	  
climatological annual cycle, interannual variability, and intraseasonal variability. 53	  
Progress has been made in modeling these aspects of the monsoon, though there is no 54	  
single model that best represents all of these aspects of the monsoon. The CMIP5 multi-55	  
model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms 56	  
of the skill of simulating pattern correlations with respect to observations. Additionally, 57	  
for rainfall/convection the MMM outperforms the individual models for the time mean, 58	  
the interannual variability of the East Asian monsoon, and intraseasonal variability. The 59	  
pattern correlation of the time (pentad) of monsoon peak and withdrawal is better 60	  
simulated than that of monsoon onset. The onset of the monsoon over India is typically 61	  
too late in the models. The extension of the monsoon over eastern China, Korea, and 62	  
Japan is underestimated, while it is overestimated over the subtropical western/central 63	  
Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño3.4 64	  
sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For 65	  
both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall 66	  
teleconnection, the MMM interannual rainfall anomalies are weak compared to 67	  
observations. Though simulation of intraseasonal variability remains problematic, several 68	  
models show improved skill at representing the northward propagation of convection and 69	  
the development of the tilted band of convection that extends from India to the equatorial 70	  
west Pacific. The MMM also well represents the space-time evolution of intraseasonal 71	  
outgoing longwave radiation anomalies. Caution is necessary when using GPCP and 72	  
CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences 73	  
over ocean and land between these two data sets, and (2) the timing of monsoon 74	  
withdrawal over India, where the smooth southward progression seen in India 75	  
Meteorological Department data is better realized in CMAP data compared to GPCP 76	  
data. 77	  
 78	  
 79	  
Keywords Asian summer monsoon; Climate model; Intercomparison; Model Systematic 80	  
Error; Skill Metrics 81	  
  82	  
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1 Introduction 83	  
 84	  
Nearly half of the world’s population is dependent on monsoon rainfall for food and 85	  
energy security. The monsoon is an integral and robust component of the seasonal cycle, 86	  
though the vagaries of its timing, duration, and intensity are of major concern, especially 87	  
over semi-arid regions where agriculture is the primary source of food. On interannual 88	  
time scales the standard deviation of the Indian/South Asian monsoon rainfall is on the 89	  
order of 10% of the seasonal mean, and the corresponding percentage of East Asian 90	  
summer monsoon rainfall is ~30% (Zhou and Yu 2005). However, subseasonal variations 91	  
can give rise to much greater swings in rainfall variability and modulate higher frequency 92	  
variations, including tropical cyclones (e.g. Nakazawa 1986). Recent examples of such 93	  
extreme swings in the monsoon include the July 2002 drought over India (Prasanna and 94	  
Annamalai 2012), and the Pakistan flood of July-August 2010 (Lau and Kim 2010). 95	  
Forewarning of extreme subseasonal variations is particularly important, since this would 96	  
enable the selection of alternative crops, the adjustment of planting times, and 97	  
management of hydrometeorological services (water distribution, etc.) to help cope with 98	  
the extreme conditions (Webster and Jian 2011). Improvement in the prospects of 99	  
monsoon predictability at all time scales, requires (1) an improved understanding of the 100	  
physical processes that modulate the monsoon, (2) improved observations for processes 101	  
studies, initialization of forecast models, and long term monitoring, and (3) better 102	  
simulation of the monsoon in numerical weather prediction models and climate models.  103	  

There are many facets of the atmosphere-ocean-land-cryosphere system that interact 104	  
to produce monsoon. The seasonal cycle of solar forcing is the basic driver of the 105	  
monsoon over the Asian region, contributing to the development of a land-sea 106	  
temperature gradient, including aloft, due to heating of the Tibetan Plateau (Li and Yanai 107	  
1996; Webster et al. 1998). The temperature and sea-level pressure gradients that develop 108	  
promote the formation of the low-level cross-equatorial southwest monsoon circulation 109	  
(Findlater 1970). This circulation transports moisture laden air from the ocean to feed 110	  
convection (Pearce and Mohanty 1984) that leads to the onset of the monsoon. 111	  
Subsequently, the off-equatorial convective heating interacts with the circulation to help 112	  
maintain monsoon rainfall (Gill 1980; Annamalai and Sperber 2005). 113	  

Precursory and/or contemporaneous forcings, such as those related to snowcover 114	  
(Blanford 1884), and pressure over the Pacific and Indian Oceans (Walker 1924), 115	  
suggested evidence that teleconnections from remote regions could influence the 116	  
monsoon, and be a source of predictability. Potential prediction of such slowly varying 117	  
components of the climate system, especially sea surface temperature (SST; Charney and 118	  
Shukla 1981), form the basis of seasonal prediction systems with dynamical models and 119	  
empirical/statistical models. The main skill in seasonal forecasting of the monsoon is 120	  
intimately linked to our ability to forecast the El Niño/Southern Oscillation (ENSO). 121	  
However, properly representing the location and intensity of the ENSO diabatic heating 122	  
is essential for getting a response consistent with that expected from statistical 123	  
teleconnections relationships (Slingo and Annamalai 2000). Other more local 124	  
interactions, such as Indian Ocean variations (Boschat et al. 2012) and soil moisture 125	  
(Webster et al. 1998), may play a role in modulating the monsoon. 126	  

Given the multitude of physical processes and interactions that influence the 127	  
monsoon, it is no wonder that simulation and prediction of the monsoon remain grand 128	  
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challenge problems. The challenges of modeling the monsoon and making climate 129	  
change projections have been discussed in Turner et al. (2011) and Turner and Annamalai 130	  
(2012). By its very nature, simulating the monsoon requires models with coupling 131	  
between the atmosphere, the ocean, and land. In prescribed SST experiments, such as 132	  
from the Tropical Ocean Global Atmosphere Monsoon Experimentation Group (WCRP 133	  
1992, 1993), the Atmospheric Model Intercomparison Project (Sperber and Palmer 134	  
1996), and the Climate Variability and Predictability (CLIVAR) Climate of the 20th 135	  
Century simulations (Zhou et al. 2009a) observed interannual variations of Asian-136	  
Australian monsoon rainfall over land were poorly represented. This in part occurred 137	  
because of the use of prescribed SST’s, which forced an incorrect rainfall-SST 138	  
teleconnection (Wang et al. 2004). Ocean-atmosphere coupling also gives rise to a wide-139	  
range of model performance, in which monsoon climate and variability can be adversely 140	  
affected by poorly representing air-sea interaction and its relationship to evaporation 141	  
(Bollasina and Nigam 2009). Even so, incremental progress in simulating monsoon has 142	  
been hard-fought due improvements in local, regional, and global interactions that 143	  
modulate the monsoon on diurnal through interdecadal time scales (e.g. Wang 2006). 144	  

The goal of this paper is to assess the fidelity of boreal summer Asian monsoon in the 145	  
Coupled Model Intercomparison Project-5 (CMIP5) models as compared to the CMIP3 146	  
models and observations. We employ a multitude of diagnostics and skill metrics to 147	  
present a quantitative assessment of the models’ monsoon performance relative to 148	  
observations. The diagnostics were selected after much deliberation by the CLIVAR 149	  
Asian-Australian Monsoon Panel (AAMP) Diagnostics Task Team, and helpful 150	  
comments from the AAMP membership and other experts. The accompanying skill 151	  
scores are meant to provide a broad overview of the ability to simulate the Asian summer 152	  
monsoon, though analysis at the process-level is beyond the scope of this assessment. We 153	  
will, however, discuss possible physical interpretations of the main results. The models 154	  
and observations are discussed in Section 2. We evaluate the time-mean rainfall and 155	  
850hPa wind in Section 3, and the climatological annual cycle and timing of monsoon 156	  
onset, peak, withdrawal, and duration are explored in Section 4. The interannual 157	  
variability of the ENSO-monsoon teleconnection, and teleconnections to the 850hPa 158	  
zonal wind over East Asia are given in Section 5. Boreal summer intraseasonal variability 159	  
(BSISV) is evaluated in Section 6, and discussion and conclusions are given in Section 7. 160	  
 161	  
 162	  
2 Models, Observations, and Skill Scores 163	  
 164	  
Table 1 contains basic information on the CMIP5 (Taylor et al. 2012) and CMIP3 models 165	  
(Meehl et al. 2007) used in this study, including horizontal and vertical resolution of the 166	  
atmospheric and oceanic components. The CMIP5 models were developed circa 2011, 167	  
while the CMIP3 models were developed circa 2004. To more easily discriminate 168	  
between the two vintages of models in this paper, the model designations for the CMIP5 169	  
models are capitalized, while the model designations of the CMIP3 models are given as 170	  
lower-case. Single realizations for each of the models have been evaluated using the 171	  
historical simulations from CMIP5 and the Climate of the 20th Century (20c3m) 172	  
simulations from CMIP3. Though the simulation period is ~1850-present, the period 173	  
1961-99 is analyzed herein. This is the period when both CMIP5 and CMIP3 had high-174	  
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frequency (daily) data with which to evaluate intraseasonal variability and the 175	  
climatological annual cycle of pentad rainfall. Thus, the analysis period of the high-176	  
frequency variability is consistent with the analysis period of the interannual variability 177	  
and the climatological performance derived from monthly data. These simulations 178	  
include the modeling groups best estimates of natural (e.g. solar irradiance, volcanic 179	  
aerosols) and anthropogenic (e.g. greenhouse gases, sulfate aerosols, ozone) climate 180	  
forcing during the simulation period. Compared to CMIP3, the CMIP5 models typically 181	  
have higher horizontal and vertical resolution in the atmosphere and ocean, a more 182	  
detailed treatment of aerosols, and some have a more complete representation of the 183	  
Earth system (e.g. carbon cycle). Detailed documentation of the CMIP3 models can be 184	  
found at: 185	  
http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php 186	  
and CMIP5 model documentation can be found at: 187	  
http://www.earthsystemgrid.org/search?Type=Simulation+Metadata 188	  

 In most cases, multiple sources of observations are used in our analysis. For rainfall 189	  
we use the Global Precipitation Climatology Project (GPCP) data (Huffman et al., 2001) 190	  
and the Climate Prediction Center Merged Analysis of Precipitation (CMAP; Xie and 191	  
Arkin 1997) for 1979-2007. Advanced Very-High Resolution Radiometer daily outgoing 192	  
longwave radiation for 1979-2006 (AVHRR OLR, Liebmann and Smith 1996), which is 193	  
a good proxy of tropical convection (Arkin and Ardanuy 1989), is used to validate 194	  
intraseasonal variability. For the 850hPa wind we use the Japan Meteorological Agency 195	  
and the Central Research Institute of Electric Power Industry Reanalysis-25 (JRA-25; 196	  
Onogi et al. 2007) for 1979-2007, the European Centre for Medium-Range Weather 197	  
Forecasts Reanalysis-40 (ERA40; Uppala et al. 2005) for 1961-1999, and the National 198	  
Centers for Environmental Prediction/National Center for Atmospheric Research 199	  
Reanalysis (NCEP/NCAR; Kalnay et al. 1996) for 1961-2007.  200	  

Model skill is calculated against a primary observational data set, for example, GPCP 201	  
in the case of precipitation. Given that the observations are only estimates of the true 202	  
values, we also calculate the skill between the different set of observations. This 203	  
observational skill estimate is a measure of consistency between the two sets of 204	  
observations. The model skill is predominantly assessed using pattern correlation 205	  
between the models and observations. Space-time correlation is used to assess the life 206	  
cycle of the model and observed intraseasonal variability. Correlation of anomalies of all-207	  
India rainfall (AIR) and Niño3.4 SST is one skill metric used to assess the ENSO-208	  
monsoon relationship, and the threat score and hit-rate are used to assess how well the 209	  
models represent the observed spatial extent of the monsoon domain. The skill scores for 210	  
the individual models and the multi-model means (MMM’s) are presented in scatter 211	  
plots, and the numerical values are given in Tables 2 and 3. For the calculation of the 212	  
skill metrics, the model data have been regridded to a 2.5o x 2.5o grid (144 x 73 for winds 213	  
and OLR (the AVHRR grid), and 144 x 72 for precipitation (the grid of GPCP and 214	  
CMAP). More details of the skill scores are presented in the relevant sections of the 215	  
paper. 216	  

Due to the large number of models evaluated, in this paper we only present spatial 217	  
patterns of the diagnostics for the observations, for the two models that demonstrate the 218	  
range of performance based on the relevant skill score, and for the CMIP5 and CMIP3 219	  
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MMM’s. To facilitate evaluation by the modeling groups and other interested parties, we 220	  
have posted figures for all of the models for each of the diagnostics at:  221	  
http://www-pcmdi.llnl.gov/projects/ken/cmip5_bsisv/Tables.html 222	  
 223	  
 224	  
3 Time-mean State 225	  
 226	  
The June-September time-mean patterns of rainfall and 850hPa wind represent key 227	  
aspects of the monsoon. The intense solar heating in late spring and early summer 228	  
supports the development of a heat low over the land of south and Southeast Asia. The 229	  
resulting land-sea thermal and pressure gradients induce the development of cross-230	  
equatorial low-level winds that transport an increased flux of moisture onto the Asian 231	  
landmass, heralding the onset of the monsoon. The strong coupling between diabatic 232	  
heating and the circulation further amplifies the cross-equatorial flow, the moisture 233	  
influx, and the rainfall. The orographic structure of the Asian landmass provides anchor 234	  
points where the observed monsoon rainfall tends to be concentrated, especially adjacent 235	  
to the Western Ghats, the foothills of the Himalayas, the Burmese coast, and the 236	  
Philippines (Fig. 1a). The orography also plays an important role in anchoring the 237	  
intensity and position of the cross-equatorial flow (Hoskins and Rodwell 1995). Thus, 238	  
apart from realistic representation of physical processes, the details of the vertical 239	  
representation of orography and its interaction with the circulation are important for 240	  
realistic simulation of regional rainfall in models. With a pattern correlation of 0.93 241	  
between GPCP and CMAP rainfall, the spatial distribution of observed rainfall is well 242	  
established (Table 2). The vagaries in simulating the multitude of physical processes 243	  
involved in the monsoon leads to diversity in the ability to simulate the observed rainfall 244	  
distribution, as seen in Figs. 1b and 1c. Despite gridscale noise at its native horizontal 245	  
resolution (Fig. 1b), when regridded to the observational horizontal resolution (not 246	  
shown), the CNRM-CM5 model has the highest pattern correlation with GPCP rainfall. 247	  
This model over-emphasizes the monsoon rainfall over the tropical oceans and does not 248	  
capture the local maxima over central India. The MIROC-ESM model, Fig. 1c, has the 249	  
smallest pattern correlation with GPCP rainfall, and it overestimates the rainfall over the 250	  
Arabian Sea, and it underestimates the East Asian component of the monsoon. 251	  

The MMM is an efficient way to assess the overall performance of the CMIP5 and 252	  
CMIP3 models. For both sets of integrations, the MMM outperforms the individual 253	  
models in terms of the pattern correlation skill metric (Table 1). Figures 1d and 1e 254	  
indicate that the CMIP5 MMM has an improved representation of rainfall compared to  255	  
the CMIP3 MMM. This is reflected by the more realistic magnitude of rainfall adjacent 256	  
to the Western Ghats, the foothills of the Himalayas, and adjacent to the Philippines. The 257	  
enhanced skill in representing the precipitation anchor points in the CMIP5 models may 258	  
be associated with their higher horizontal resolution compared to the CMIP3 models. 259	  
Even so, the MMM’s have smaller pattern correlations than that between GPCP and 260	  
CMAP, indicating scope for model improvement in the representation of rainfall.  261	  

Figures 1f-1j show the spatial distributions of the rainfall errors. The magnitude of the 262	  
rainfall errors in individual models (Figs. 1g and 1h) is larger than seen in observations 263	  
(Fig. 1f) and the MMM’s (Figs. 1i-1j). The CMIP5 and CMIP3 MMM errors have 264	  
virtually the same spatial structure, with an underestimate of rainfall over the Asian 265	  
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continent from India to Southeast Asia, and extending north over eastern China, Korea, 266	  
and southern Japan. The error over eastern China, Korea, and Japan indicates that rainfall 267	  
in the Meiyu front is underestimated. Alternatively, the rainfall is over-estimated over 268	  
most of the tropical western/central Indian Ocean. Over the western Pacific, there is a 269	  
tripole error pattern from the equator to 45oN. The MMM error structure is largely 270	  
consistent with difference between CMAP and GPCP (Fig. 1f). A similar error structure 271	  
is also seen by comparing Tropical Rainfall Measurement Mission rainfall with GPCP 272	  
(Brian Mapes, personal communication, 2012), suggesting that the lack of definitive 273	  
precipitation intensity estimates may be an impediment to making further progress in 274	  
simulating monsoon rainfall. 275	  

The observed and simulated time-mean 850hPa wind is given in Fig. 2. Skill is 276	  
calculated with respect to ERA40. The ERA40 and JRA25 reanalysis (not shown) 277	  
estimates of the wind structure are highly consistent, as indicated by                                                                                                                   278	  
their pattern correlation of 0.99 (Table 2). The main features of the low-level monsoon 279	  
circulation include the cross-equatorial flow over the western Indian Ocean/East African 280	  
highlands, the westerly flow that extends from the Arabian Sea to the South China Sea, 281	  
the monsoon trough over the Bay of Bengal, and the weak southerlies over the South 282	  
China Sea and East Asia. The difference between JRA25 and ERA40, seen in Fig. 2f 283	  
(note the different unit vector scale relative to the full field in Fig. 2a), is smaller than that 284	  
between the NCEP-NCAR and ERA15 reanalyses (Annamalai et al. 1999), where there 285	  
were also large errors over the tropical Indian Ocean. The simulated northwesterly wind 286	  
error over the Arabian Peninsula, and the northerly error over Pakistan and the Thar 287	  
Desert, Figs. 2g-2j, is similar to the differences between the reanalyses (Fig. 2f). This 288	  
suggests that improved observations are needed to constrain the climate simulations. It is 289	  
possible that a dearth of rawindsonde reports from remote regions, in conjunction with 290	  
the way in which the land surface processes and/or orography are handled, may 291	  
contribute to the observational uncertainty over the land from the reanalyses. 292	  

As for rainfall, the MMM’s (Figs. 2d and 2e) outperform the range of model behavior 293	  
(Figs. 2b and 2c), and the systematic model error is nearly identical between CMIP5 and 294	  
CMIP3 (Figs. 2i and 2j). The MMM wind error is consistent with the rainfall error, with 295	  
weak flow over India and the Bay of Bengal being associated with the underestimated 296	  
rainfall over these locations. Despite overly strong rainfall over the western Arabian Sea, 297	  
both CMIP5 and CMIP3 MMM’s suggest that the underestimated cross-equatorial flow is 298	  
associated with the underestimated off-equatorial diabatic heating anomalies along the 299	  
monsoon trough, near 20oN. The monsoon trough over the Bay of Bengal is too zonal 300	  
(Figs. 2d and 2e), which may contribute to the excessive rainfall in the vicinity of the 301	  
South China Sea and Maritime Continent (Figs. 1d and 1e). Support for this scenario has 302	  
been found in experiments using the GFDL AM2.1 model (Annamalai et al. 2012a). 303	  
However, the sequence of events that give rise to these errors needs to be worked out: Is 304	  
it the poor development of the monsoon trough that gives rise to the excessive rainfall 305	  
near the Maritime Continent, or does excessive rainfall near the Maritime Continent 306	  
result in a poor representation of the monsoon trough? Alternative and/or additional 307	  
interactions/feedbacks need to be considered in the development of the systematic error, 308	  
including the possible role of Rossby wave descent over South Asia (Annamalai and 309	  
Sperber 2005), SST feedback, and moisture transports. 310	  
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Over the western Pacific the simulated cyclonic wind error (Figs. 2g-2j), which is 311	  
consistent with the rainfall overestimate seen near 120oE-180oE, 8oN-22oN (Figs. 1g and 312	  
1i-1j; PCM rainfall error not shown), indicates a large bias in the simulation of the 313	  
western Pacific subtropical high. The northeasterly wind error along the poleward flank 314	  
of this cyclonic circulation pattern and the northerly error over the South China Sea are 315	  
indicative of lower moisture content air (Prasanna and Annamalai 2012) and reduced 316	  
rainfall along the Meiyu, Changma, Baiu rainfall front. For the MMM’s, the time mean 317	  
wind and the wind error oppose each other, suggesting that reduced moisture from 318	  
monsoon westerlies and the southerlies over the South China Sea is a contributing factor 319	  
in the weak Meiyu, Changma, Baiu front. However, in the case of PCM, the time-mean 320	  
wind and the wind error (Figs. 2b and 2h) are both easterly/northeasterly near southern 321	  
Japan and China, suggesting that advection of lower moisture air from the extratropics is 322	  
a factor in producing the weak Meiyu, Changma, Baiu front. 323	  

The overall skill in simulating the time-mean monsoon is given in Fig. 3, which is a 324	  
scatterplot of the pattern correlation relative to observations (ERA-40 and GPCP) for 325	  
850hPa wind vs. precipitation. The results indicate that for all models the 850hPa wind is 326	  
better simulated than the precipitation. This is perhaps not surprising since the circulation 327	  
is a response to integrated diabatic heating and not to the details of the regional rainfall 328	  
distribution. For 850hPa wind, the MMM and CNRM-CM5 skill are within the range of 329	  
observational skill when NCEP/NCAR Reanalysis wind is also considered. Importantly, 330	  
for both CMIP5 and CMIP3 there is a better than 1% statistically significant relationship 331	  
between the skill in representing the rainfall and the 850hPa wind. For example, the 332	  
CNRM-CM5 had the largest pattern correlation with observations for both rainfall and 333	  
850hPa wind (Table 2). The statistical relationship suggests that improving the rainfall in 334	  
the models will result in an improved representation of the wind and vice versa. 335	  
 336	  
 337	  
4 Annual Cycle 338	  
 339	  
In this section we evaluate the annual cycle of rainfall using climatologies of both 340	  
monthly data and pentad data. The monthly data are used to generate latitude-time plots 341	  
to assess how well the models represent the annual cycle of rainfall in the vicinity of 342	  
India, including the northward propagation of the continental rainband. The pentad data 343	  
are used to assess how well the models represent the time of monsoon onset, peak, 344	  
withdrawal, and the duration of the monsoon season, as well as the spatial extent of the 345	  
monsoon domain. 346	  
 347	  
4.1 Indian Monsoon 348	  
 349	  
A latitude-time diagram of monthly rainfall, averaged between 70oE-90oE, is constructed 350	  
to show the transition of rainfall between the ocean and the Indian subcontinent during 351	  
the course of the annual cycle. The GPCP and CMAP observations (Figs. 4a and 4b, 352	  
respectively) show the development of two rainfall maxima beginning in May. The 353	  
poleward branch depicts the evolution of the Indian monsoon, with the maximum rainfall 354	  
occurring in July. The oceanic branch, located near 5oS, reaches a local maximum in 355	  
September, as the Indian monsoon weakens. These features are consistent between GPCP 356	  
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and CMAP, with a pattern correlation of 0.89 over the domain 10oS-30oN for May-357	  
October (see box in Fig 4a). However, CMAP is drier (wetter) than GPCP over India (the 358	  
tropical Indian Ocean), consistent with the observational biases noted for the time mean 359	  
state (see Fig. 1, Section 3). Furthermore, these biases in the distribution of land vs. 360	  
oceanic rainfall also give rise to uncertainty in the latitude of maximum rainfall over 361	  
India during the boreal summer in GPCP and CMAP. 362	  

The latitude-time plots for MIROC5 and csiro-mk3.5 show the range of model skill in 363	  
representing the annual cycle of rainfall over the Indian longitudes (Figs. 4c and 4d), 364	  
based on pattern correlation skill over the afore-mentioned space-time domain. MIROC5 365	  
overestimates the magnitude of the Indian monsoon and oceanic rainfall bands. The 366	  
oceanic rainband and the rainfall minimum to its north are not as coherent as observed, 367	  
contributing to a pattern correlation of 0.78 relative to GPCP. csiro-mk3.5 has a late 368	  
development of the Indian monsoon, and the oceanic rainband transitions into the 369	  
Northern Hemisphere during boreal summer, unlike the observations. With such biases, 370	  
csiro-mk3.5 only has a pattern correlation of 0.17 with GPCP. 371	  

The CMIP5 and CMIP3 MMM’s (Figs. 4e and 4f) have nearly identical pattern 372	  
correlations with GPCP (0.67 and 0.66, respectively). The MMM’s indicate that the core 373	  
of the continental rainband does not propagate as far north as observed, consistent with 374	  
the model biases seen of other modeling studies (Gadgil and Sajani 1998; Rajeevan and 375	  
Najundiah 2009). Additionally, both MMM fail to capture the observed northward 376	  
propagation of the rainfall minimum from the equator to 10oN during boreal summer, and 377	  
the oceanic rainband is weaker than observed. This latter error is also seen in the JJAS 378	  
rainfall climatology (Fig. 1i and 1j). Even so, there is improvement in the CMIP5 MMM 379	  
compared to the CMIP3 MMM, with a more realistic magnitude of rainfall between 380	  
10oN-20oN during July and August. Consistent with the results given in Figs. 1d and 1e, 381	  
this improvement is related to the better representation of monsoon rainfall adjacent to 382	  
the Western Ghats in CMIP5 compared to CMIP3. The annual cycle skill scores from all 383	  
of the models are further evidence of improvement in the simulation of the annual cycle 384	  
of rainfall in CMIP5 compared to CMIP3 (Fig. 4g). Notably, 6/10 and 13/20 of the 385	  
largest skill scores are from CMIP5 models.  386	  
 387	  
4.2 Monsoon Onset, Peak, Withdrawal, and Duration 388	  
 389	  
The analysis of the annual cycle of the monsoon using pentad data is restricted to 21/25 390	  
CMIP5 models and 18/22 CMIP3 models due to limitations in the availability of high-391	  
frequency rainfall data. To facilitate the analysis, the climatological pentads of rainfall 392	  
from the models have first been regridded to the GPCP grid. Our methodology closely 393	  
follows that of Wang and LinHo (2002). At each gridpoint the pentad time series is 394	  
smoothed with a five pentad running mean. The smoothing removes high-frequency 395	  
fluctuations that arise due to the limited sample size, while retaining the climatological 396	  
intraseasonal oscillation (LinHo and Wang 2002). The January mean rainfall is then 397	  
removed from each pentad, resulting in the relative rainfall rate. Using GPCP data, an 398	  
example of the relative rainfall rate for the Bay of Bengal is given in Fig. 5. At a given 399	  
gridpoint, the boreal summer monsoon is taken to occur if the relative rainfall rate 400	  
exceeds 5mm day-1 during May-September. Onset is defined as the first pentad at which 401	  
this threshold is met or exceeded. The time of peak monsoon is the pentad at which the 402	  
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maximum relative rainfall rate occurs, and the withdrawal of the monsoon is the first 403	  
pentad at which the relative rainfall rate falls below the onset criterion. The duration of 404	  
the monsoon is defined as: (decay pentad) minus (onset pentad). Given that the monsoon 405	  
is defined by a threshold criterion, the monsoon domain will be different for each of the 406	  
models. Therefore, the MMM of the onset, peak, decay, and duration is calculated at 407	  
gridpoints if half or more of the models have monsoon defined at that location. Skill is 408	  
assessed using pattern correlation for gridpoints where both observations and models 409	  
have monsoon defined. 410	  

Since the monsoon is defined by a threshold criterion, this approach is a severe test of 411	  
a models ability to properly represent the observed amplitude and timing of the annual 412	  
cycle of the monsoon. Thus, for a given model, absence of a signal relative to 413	  
observations indicates that the model does not have the correct amplitude of the annual 414	  
cycle, and this is a critical piece of information for modelers to consider during the course 415	  
of model development. 416	  

The pentads of onset and the peak monsoon for the observations and models are given 417	  
in Fig. 6. The observed pattern of onset, seen in Fig. 6a, is consistent with the analysis of 418	  
Wang and LinHo (2002). Monsoon onset occurs first over Southeast Asia (Matusmoto 419	  
1997), and then subsequently over the South China Sea and to the southwest of India. Wu 420	  
et al. (2012) have found that the development of the Asian summer monsoon onset vortex 421	  
is a consequence of air-sea interaction over the Bay of Bengal. The onset progresses 422	  
northward from these locations, subsequently engulfing India, southern China, Korea, 423	  
Japan, and the western Pacific. The range of skill in simulating the pentad of monsoon 424	  
onset is given by gfdl cm2.0 and inm-cm3.0 (Figs. 6b and 6c). The former model 425	  
essentially has the progression correct, but the onset occurs later than observed over 426	  
India. However, this model fails to define monsoon over northern China, Korea, and 427	  
Japan, while it has overly extensive monsoon rainfall over the western/central Pacific 428	  
Ocean. inm-cm3.0 also has a late onset over India, but the monsoon incorrectly 429	  
progresses from north to south over China. The CMIP5 MMM has a larger pattern 430	  
correlation with GPCP than the CMIP3 MMM (Figs. 6d and 6e, Table 2), indicating 431	  
improvement in the ability to simulate the onset of the monsoon. This is seen as a more 432	  
realistic onset time over Southeast Asia. However, for both MMM’s, the onset still 433	  
remains too late over India, and they overestimate the monsoon extension over the 434	  
western/central Pacific Ocean. Contrary to the time-mean monsoon, individual models 435	  
exceed the skill of the MMM. 436	  

Regarding the time of peak monsoon, the observations indicate that over the Arabian 437	  
Sea and extending into India the peak time occurs progressively later, as it does from the 438	  
southeast of Japan into eastern/central China (Fig. 6f). However, over southwestern 439	  
China to Southeast Asia the peak monsoon rainfall occurs from north to south, indicating 440	  
that the maximum rainfall occurs as the monsoon retreats. MIROC5 best represents this 441	  
progression, though the time of the peak monsoon over India is too late (Fig. 6g), and the 442	  
extent of the observed monsoon over the western Pacific is not simulated. echo-g 443	  
qualitatively represents the northward progression of the peak pentad near India, though 444	  
the actual timing is poorly represented there and over Southeast Asia (Fig. 6h). The 445	  
CMIP5 MMM outperforms the CMIP3 MMM (Figs. 6i and 6j), though both are more 446	  
uniform compared to observations in representing the time of the monsoon peak, and they 447	  
lack the early peak near 90oE over the Bay of Bengal. The spatial extent of the monsoon, 448	  
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in the CMIP5 MMM is more realistic than in the CMIP3 MMM, with the monsoon 449	  
domain extending over northeast China. The spatial extent of the monsoon is discussed in 450	  
more detail below. 451	  

The earliest withdrawal of the observed monsoon occurs over the West Pacific to the 452	  
southeast of Japan, over China, and over the Arabian Sea, the periphery of the monsoon 453	  
domain (Fig. 7a). Over East Asia the withdrawal progresses southward from northeast 454	  
China, with the latest withdrawal occurring over Southeast Asia and the South China Sea. 455	  
Over India, the results in Fig. 7a indicate that the GPCP data do not represent the smooth 456	  
withdrawal of the monsoon from northwest India to southeast India (the reverse of the 457	  
onset progression), as seen from the “Normal Date For Withdrawal of Southwest 458	  
Monsoon” from the India Meteorological Department 459	  
(http://www.imd.gov.in/section/nhac/dynamic/Monsoon_frame.htm). Our analysis 460	  
indicates that CMAP data is more suitable for representing this aspect of the monsoon 461	  
withdrawal. This is confirmed by comparing our CMAP results (not shown) with those 462	  
from Wang and LinHo (2002, their Fig. 8). MIROC5 well represents the gross features of 463	  
observed monsoon withdrawal, though it simulates a large land-sea contrast in the 464	  
withdrawal time, and with the withdrawal occurring later than observed over India (Fig. 465	  
7b). echo-g also has a late withdrawal over India, with only a hint of evidence of north to 466	  
south withdrawal over China due to its truncated monsoon domain (Fig. 7c). The CMIP5 467	  
MMM outperforms the CMIP3 MMM, though both MMM’s are more zonal than 468	  
observed in their north to south withdrawal (Figs. 7d and 7e). As for the onset phase, 469	  
individual models outperform the MMM. 470	  

The observed duration of the monsoon is longest (~29-37 pentads) over Southeast 471	  
Asia, and it becomes (more or less) progressively shorter with increasing radial distance 472	  
over the surrounding monsoon domain (Fig. 7f). CNRM-CM5 well represents this gross 473	  
structure (Fig. 7g), though the monsoon domain is not as contiguous as observed. A 474	  
similar radial structure is seen in both MMM’s (Figs. 7i and 7j), with CMIP5 better 475	  
representing monsoon duration than CMIP3. Despite the late onset over India in the 476	  
MMM’s (Figs. 6d and 6e), the monsoon duration over India is overestimated by up to 477	  
three pentads. These results suggest that over some regions the models have a monsoon 478	  
seasonal cycle that is phase-delayed and/or longer in duration when compared to 479	  
observations. 480	  

Figures 8a-8c show the skill of the models in simulating the pattern correlation 481	  
relative to GPCP of the onset vs. the peak, withdrawal, and duration of the monsoon, 482	  
respectively. The motivation is to evaluate which aspects of the annual cycle are best 483	  
represented, and to test whether skill in simulating the onset, also translates into skill in 484	  
representing the other stages in the annual cycle evolution of the monsoon. Figures 8a 485	  
and 8b indicate that the skill in simulating the pattern of monsoon peak and monsoon 486	  
withdrawal typically exceeds that of onset, but there is no statistical relationship in either 487	  
peak or withdrawal skill relative to onset skill. However, the regression fits in Fig. 8c, 488	  
significant at better than the 1% level, indicate that the pattern of the monsoon duration is 489	  
better represented in models that have a better simulation of the onset pattern. In 490	  
summary, the pattern correlation skill metrics indicate that the models are very diverse in 491	  
their ability to simulate the monsoon annual cycle, with the CMIP5 MMM outperforming 492	  
the CMIP3 MMM (Table 2). Biases in the annual cycle of SST, the spatial distribution of 493	  
rainfall, and the vertical structure of the diabatic heating that are important for the 494	  
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circulation and moisture transports may all play a role in the errors in simulating the 495	  
annual cycle evolution of the monsoon. 496	  

The hit rate and threat score are two categorical skill scores that are used to quantify 497	  
the ability of the models to simulate the observed (GPCP) spatial domain of the monsoon. 498	  
The skill analysis is performed over the region 40oE-180oE, 10oS-50oN (see Fig. 6). 499	  
These skill scores are based on a 2x2 contingency table, where a = the number of grid 500	  
points at which the model correctly represents the observed presence of monsoon, b = the 501	  
number of gridpoints at which the model represents monsoon, but monsoon is not 502	  
observed, c = the number of gridpoints at which the model represents the absence of 503	  
monsoon, but monsoon is observed, and d = the number of grid points at which the model 504	  
correctly represents the observed absence of monsoon. The hit rate is the fraction of 505	  
model gridpoints that are correctly represented as observed monsoon and non-monsoon 506	  
([a + d]/[a + b + c + d]). The threat score, preferable when the quantity being forecast (the 507	  
presence of the monsoon) occurs less frequently than the alternative (absence of the 508	  
monsoon), “is the number of correct ‘yes’ forecasts divided by the total number of 509	  
occasions on which that event was forecast and/or observed (a/[a + b + c]). It can be 510	  
viewed as a hit rate for the quantity being forecast, after removing correct ‘no’ forecasts 511	  
(d) from consideration” (Wilks 1995, p.240). A hit rate and threat score of 1.0 would 512	  
indicate perfect agreement between model and observations. Figure 8d and Table 2 513	  
indicate that the CMIP5 MMM is more skillful than the CMIP3 MMM in representing 514	  
the spatial extent of the monsoon, with individual models being more skillful than the 515	  
MMM’s. The low model skill relative to that between CMAP with GPCP confirms the 516	  
results of Figs. 6 and 7 that improving the extent of the simulated monsoon domain is 517	  
needed. Particularly problematic in the models is the lack of a monsoon extension over 518	  
northeast China, Korea, and Japan, and the incorrect monsoon signal simulated over the 519	  
central Pacific Ocean. 520	  
 521	  
 522	  
5 Interannual Variability 523	  
 524	  
In this section we evaluate the interannual variability of (1) the ENSO-monsoon 525	  
teleconnection, with emphasis on the rainfall response in South Asia to Niño3.4 SST 526	  
anomalies, and (2) the response of rainfall and 850hPa wind in the East Asia region to the 527	  
meridional gradient of the zonal wind anomalies at 850hPa. 528	  
 529	  
5.1 Indian Summer Monsoon 530	  
 531	  
The relationship between AIR and ENSO is one of the most studied teleconnections in 532	  
climate science (see review article by Turner and Annamalai 2012). Annamalai et al. 533	  
(2007) provided an analysis of the time-mean state and interannual-interdecadal 534	  
variability of the Asian summer monsoon in the CMIP3 models. The complexities in 535	  
representing (1) the spatial distribution of the time-mean monsoon rainfall, (2) the ENSO 536	  
forcing from the tropical Pacific, and (3) the seasonality of the ENSO-monsoon 537	  
relationship revealed that only four of the CMIP3 models were realistic in representing 538	  
the interannual coupled atmosphere-ocean teleconnection between AIR and tropical SST. 539	  
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Given in Fig. 9 and Table 3 is the lag 0 teleconnection between JJAS Niño3.4 SST 540	  
anomalies and JJAS AIR anomalies. This provides a preliminary skill estimate of the 541	  
models ability to represent the AIR-ENSO relationship. Over the period 1961-1999 the 542	  
observations indicate the anti-correlation to be about -0.5. However, there is no 543	  
expectation that the models should represent exactly this magnitude of anticorrelation, 544	  
since their ENSO variability may be unrealistic, and/or their ENSO characteristics may 545	  
be regime dependent with periods (decades or longer) when ENSO is stronger or weaker 546	  
than presently observed (Wittenberg 2009). Therefore, the bounds of the observed 547	  
interdecadal variability of the AIR-ENSO teleconnection are used to provide a constraint 548	  
on evaluating model performance. The observed anticorrelation ranges from 549	  
approximately -0.3 to -0.75 at interdecadal time scales, and rarely has it been statistically 550	  
insignificant (Annamalai et al. 2007). Changes in the interdecadal strength of the 551	  
observed anticorrelation are suggested to be related to changes in ENSO variance 552	  
(Annamalai et al. 2012b) as well as changes to the	  lead-‐lag	  relationship	  between	  ENSO	  553	  
and	  June-‐July	  and	  August-‐September	  Indian	  monsoon	  rainfall	  (Boschat	  et	  al.	  2012). 554	  
Using these observed bounds, 11/25 (18/22) CMIP5 (CMIP3) models exhibit a 555	  
statistically significant AIR-ENSO teleconnection. 556	  

The spatial pattern of the ENSO-forced rainfall anomalies is obtained from linear 557	  
regression of JJAS Niño3.4 SST anomalies with JJAS rainfall anomalies (Fig. 10). The 558	  
regressions are presented for one standard deviation of the Niño3.4 SST anomalies, and 559	  
thus correspond to rainfall anomalies associated with El Niño. The high-resolution 560	  
observations over India from Rajeevan et al. (2006) and the GPCP observations show 561	  
similar characteristics for El Niño conditions. The largest rainfall decreases occur 562	  
adjacent to the Western Ghats and near the foothills of the Himalayas, with a secondary 563	  
rainfall deficit over central India, near 78oE, 18oN. Over northeastern India and near the 564	  
Burmese coast, above-normal rainfall anomalies prevail, and are also seen in CMAP 565	  
rainfall (not shown). With the strongest AIR-ENSO anticorrelation of the models 566	  
analyzed (-0.76), the IPSL CM5A-MR simulation exhibits a stronger than observed 567	  
deficit of rainfall over India, and enhanced rainfall near Burma (Fig. 10c). Additionally, 568	  
this model has the largest pattern correlation, 0.64, of all models considered herein 569	  
between the simulated and observed ENSO-forced rainfall anomalies. As seen in Fig. 570	  
10d, over India, the FGOALS-s2 model has a mixed rainfall signal, with a pattern 571	  
correlation of only 0.10, and as such an insignificant AIR-ENSO teleconnection (0.11). 572	  
Furthermore, this model has a strong rainfall enhancement over the Arabian Sea and the 573	  
Bay of Bengal adjacent to India that is not seen in observations. An evaluation of the 574	  
ENSO impact on the Asian monsoon in the FGOALS-s2 pre-industrial simulation is 575	  
given by Wu and Zhou (2012). The CMIP5 MMM has a slightly larger pattern 576	  
correlation with GPCP (0.62) than does the CMIP3 MMM (0.60), while individual 577	  
models have larger pattern correlations than the MMM’s (Table 3). Improvement in the 578	  
CMIP5 MMM is also noted, since it also has larger rainfall anomalies than the CMIP3 579	  
MMM. However, in both cases the MMM anomalies are weaker than observed due to the 580	  
wide-range of fidelity in simulating the precipitation teleconnections in the individual 581	  
models. 582	  

The skill in representing the AIR-ENSO correlation vs. the pattern correlation of 583	  
ENSO-forced rainfall anomalies with GPCP observations over 60oE-100oE, 0o-30oN is 584	  
given in Fig. 9b. For the CMIP5 models there is a better than 1% statistically significant 585	  
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relationship between these skill metrics, indicating that the pattern of rainfall anomalies is 586	  
better represented in models with a stronger anticorrelation between AIR and Niño3.4 587	  
SST anomalies. Conversely, as expected, models with a near-zero AIR-ENSO correlation 588	  
have ENSO-forced rainfall anomaly pattern correlations that are not statistically 589	  
significant. Interestingly, for AIR-ENSO correlations of about -0.3, the rainfall anomaly 590	  
pattern correlations range from -0.14 to 0.53. This wide-range of skill in representing the 591	  
rainfall anomaly pattern correlation can be due to many simulation features, such as the 592	  
location and strength of the ENSO SST anomalies (Krishna Kumar et al. 2006), the 593	  
spatio-temporal evolution of ENSO diabatic heating anomalies, and the proper 594	  
seasonality of the AIR-ENSO relationship. As discussed in Annamalai et al. (2007), these 595	  
interactions conspire to make simulation of the ENSO-monsoon teleconnection a 596	  
challenge, with only four of the CMIP3 models representing the detailed aspects of this 597	  
teleconnection. A more detailed diagnosis of the ENSO-monsoon teleconnection in the 598	  
CMIP5 models is presented in Annamalai et al. (2012b). By examining all the ensemble 599	  
members for the entire historical simulation period (~1850 to 2005), they note that the 600	  
timing, amplitude, and spatial extent in the ENSO-monsoon relationship depends on the 601	  
ability of the models’ to capture the mean monsoon rainfall distribution and the ENSO-602	  
related SST and diabatic heating anomalies along the equatorial Pacific. They also note 603	  
that incorrect simulation of regional SST anomalies over the tropical Indian Ocean and 604	  
west Pacific sectors degrades the ENSO-monsoon association, even if the models capture 605	  
ENSO realistically. This SST sensitivity is consistent with Lau and Nath (2012), who 606	  
showed that during El Niño the tropical Pacific SST forcing and the warm SST anomalies 607	  
in the Indian Ocean have opposing effects on the monsoon development. The role of SST 608	  
errors over the Indian Ocean was investigated by Achuthavarier et al. (2012) using the 609	  
NCEP Coupled Forecast System Model. They found that unrealistic early development of 610	  
the Indian Ocean dipole prevents the Pacific ENSO signal from impacting the monsoon, 611	  
and results in the inability of the model to generate the observed negative correlation of 612	  
the ENSO-monsoon relationship. Thus, there are many critical factors for simulating a 613	  
realistic ENSO-monsoon teleconnection, including indirect affects due to preceding 614	  
boreal winter ENSO development (Wu et al. 2012). 615	  
 616	  
5.2 East Asian Summer Monsoon 617	  
 618	  
The East Asian summer monsoon (EASM) is a complicated region in that there are many 619	  
competing mechanisms by which the monsoon is modulated. Influences from the Indian 620	  
Ocean, ENSO, and from the eastern Pacific, plus local air-sea interactions over the South 621	  
China Sea and interaction of tropical and subtropical circulation systems have been 622	  
documented (Zhou et al. 2009b; Zhou et al. 2011). Thus, there are many observational 623	  
metrics to assess model performance (Zhou and Li 2002; Chen et al. 2010; Boo et al. 624	  
2011), and a plethora of indexes for measuring the strength of the EASM. As discussed in 625	  
Wang et al. (2008) the indexes fall broadly into five categories related to (1) East-West 626	  
thermal contrast, (2) North-South thermal contrast, (3) wind shear vorticity, (4) southwest 627	  
monsoon, and (5) South China Sea. In an effort to provide a unified approach to 628	  
measuring the strength of the East Asian summer monsoon, Wang et al. (2008) have 629	  
performed a multivariate Empirical Orthogonal Function (EOF) analysis using 630	  
precipitation, sea-level pressure, and the zonal and meridional winds at 850hPa and 631	  
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200hPa using JJA anomalies over the domain 100oE-140oE, 0o-50oN for 1979-2006. The 632	  
leading mode, which is not related to the developing phase of ENSO, is characterized by 633	  
enhanced precipitation along the East Asian subtropical front associated with interannual 634	  
variations of the Meiyu/Baiu/Changma rainband. These authors found that the principal 635	  
component (PC) of this leading mode had a correlation of -0.97 with JJA anomalies of 636	  
the zonal wind shear index of Wang and Fan (1999), the strongest correlation among the 637	  
25 East Asian monsoon indexes considered in their paper. Thus, as a simple East Asian 638	  
summer monsoon index for validating the CMIP5 and CMIP3 models we adopt the 639	  
negative of the Wang and Fan (1999) zonal wind shear index: 640	  
 641	  
WFN = (U850; 110oE-140oE, 22.5oN-32.5oN) minus (U850; 90oE-130oE, 5oN-15oN) 642	  
 643	  

Figure 11a shows the regression of the WFN from JRA25 reanalysis with JJA 644	  
anomalies of GPCP rainfall and JRA25 850hPa wind for 1979-2007. These rainfall and 645	  
wind anomalies are consistent with the multivariate EOF anomalies presented in Figures 646	  
2a and 5a of Wang et al. (2008). Furthermore, pattern correlations of these anomalies 647	  
with those derived from CMAP and NCEP/NCAR reanalysis are 0.99 and 0.96, 648	  
respectively (Table 3), indicating that these features are robust characteristics of East 649	  
Asian summer monsoon variability. 650	  

For both CMIP5 and CMIP3, the MMM’s are equally adept at representing the wind 651	  
anomalies (Figs. 11b and 11c), with CMIP5 being superior to CMIP3 in representing the 652	  
pattern of rainfall anomalies, especially the deficit rainfall adjacent to the west coast of 653	  
the Philippines. The MMM are poor in representing the rainfall maxima that extends 654	  
from central China to Southwest Japan. Additionally, the MMM rainfall anomalies are 655	  
smaller than observed or simulated by individual models; a feature also noted for the 656	  
ENSO forced rainfall anomalies over the Indian sector (Figs. 10e and 10f). Figures 11d 657	  
and 11e show the anomalies for models that have the largest and smallest 850hPa wind 658	  
anomaly pattern correlations compared to JRA25. In gfdl cm2.0 the 850hPa pattern 659	  
correlation is nearly identical to that of the MMM, while the pattern correlation of the 660	  
precipitation anomalies is smaller. iap fgoals-g1.0 has enhanced rainfall near 30oN with 661	  
below normal rainfall to the south, though the details of the observed spatial pattern are 662	  
not well represented. Furthermore, the relationship of the enhanced rainfall to the western 663	  
Pacific subtropical high and anti-cyclonic 850hPa wind anomalies are not properly 664	  
represented. Rather, the enhanced rainfall is associated with strong cyclonic wind 665	  
anomalies near 40oN, with a possible contribution of moisture from the westerly 666	  
monsoon flow over Southeast Asia. This bias is related to the weak western Pacific 667	  
summer monsoon and deficient rainfall surrounding Philippines in the atmospheric model 668	  
component of iap fgoals-g1.0 (Liu et al. 2011). HadGEM2-ES has the largest rainfall 669	  
pattern correlation of the models analyzed, with an excellent representation of the rainfall 670	  
minima adjacent to the west coast of the Philippines, and the maxima over southeast 671	  
China and southwest Japan (Fig. 11f). INM CM4 has a weak signal in the 850hPa wind 672	  
anomalies, indicating that the simulated subtropical high is not modulating the flow as 673	  
strongly as observed. As a consequence the rainfall is not modulated as observed. 674	  

The skill assessment of the ability of the models to simulate East Asian monsoon 675	  
patterns of rainfall and 850hPa wind anomalies over 100oE-140oE, 0o-50oN is presented 676	  
in Fig. 12. For both CMIP5 and CMIP3 the 850hPa wind anomalies are better simulated 677	  
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than the rainfall anomalies (Fig. 12a), consistent with the CMIP3 analysis of Boo et al. 678	  
(2011). The CMIP5 MMM rainfall anomalies and 850hPa wind anomalies have larger 679	  
pattern correlations relative to those from the CMIP3 MMM. For both sets of models 680	  
there is a better than 5% significant relationship of a correspondence between the quality 681	  
of the 850hPa wind anomalies and the rainfall anomalies. As seen in Figs. 12b and 12c 682	  
for 850hPa wind and rainfall, respectively, there is no relationship between the quality of 683	  
the interannual variability and the climatology over the East Asian region. Interestingly, 684	  
the interannual variability of the 850hPa wind anomalies is better represented than the 685	  
wind climatology for all but 3 models (Fig. 12b), while for the majority of models the 686	  
rainfall climatology is better represented than the interannual variability (Fig. 12c). A 687	  
reasonable representation of climate mean monsoon rain band over East Asia relies 688	  
heavily on convection parameterization (Chen et al. 2010). 689	  

The analysis of the interannual variability of the Asian summer monsoon indicates 690	  
that there is a wide-range of performance among the models, with substantial scope for 691	  
model improvement in the simulation of the rainfall anomalies. A summary of the ability 692	  
of the models to simulate the interannual variability of rainfall for the Indian summer 693	  
monsoon and the East Asian monsoon is given in Fig. 12d. Relative to GPCP rainfall, it 694	  
shows the pattern correlations of the interannual rainfall anomalies over the East Asian 695	  
Summer Monsoon domain (also see Figs. 11, 12a, and 12c) are better simulated than the 696	  
pattern correlations of the interannual rainfall anomalies over the Indian Monsoon 697	  
domain (also see Figs. 9b and 10). The lack of a statistical relationship between the 698	  
interannual variations over these regions confirms that the controlling mechanisms are 699	  
distinct for the two regions, and that progress in modeling monsoon interannual 700	  
variability requires fidelity in representing a wide variety of processes. 701	  
 702	  
 703	  
6 Boreal Summer Intraseasonal Variability 704	  
 705	  
BSISV of the monsoon is the dominant modulator of convection over the Asian domain, 706	  
and it has been shown to contribute to interannual variability of the monsoon (Sperber et 707	  
al. 2000). Where the environment is favorable for convection over a broad region, 708	  
embedded features, such as tropical depressions and typhoons, are important contributors 709	  
to total seasonal rainfall. On modeling intraseasonal time scales, Sperber and Annamalai 710	  
(2008) found that only 2 of 17 CMIP3 and CMIP-2+ models analyzed could represent the 711	  
life cycle of the leading mode of 30-50 day BSISV. Lin et al. (2008) found that the 12-24 712	  
day mode was better represented than the BSISV in CMIP3. Even so, the BSISV 713	  
simulation in the CMIP3 models was a marked improvement compared to the previous 714	  
generation of models (Waliser et al. 2003). 715	  

Following the analysis of the CMIP3 models by Sperber and Annamalai (2008), the 716	  
BSISV is characterized by 20-100 day bandpass filtered variance, and by evaluation of 717	  
the models ability to simulate the spatio-temporal evolution of the leading 718	  
Cyclostationary EOF (CsEOF) of filtered OLR that was described in Annamalai and 719	  
Sperber (2005). Due to limited availability of daily data, 16 CMIP5 models and 15 720	  
CMIP3 are analyzed herein. Given the CMIP3 analysis of Sperber and Annamalai (2008), 721	  
we predominantly concentrate on the performance of the CMIP5 models herein. 722	  
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The 20-100 day bandpass filtered variance from observations and models is shown in 723	  
Figs. 13a-f. The MPI ESM-LR model (Fig. 13b), with a pattern correlation of 0.87 724	  
relative to the AVHRR OLR (Fig. 13a), has the best representation of the variance pattern 725	  
of the models considered (Table 3). Consistent with previous MPI models, it has skillful 726	  
performance for this baseline intraseasonal diagnostic. Importantly, the CMIP5 model 727	  
version has a more realistic amplitude of OLR variance, which in previous versions was 728	  
substantially overestimated. Additional improvement is with respect to the partitioning of 729	  
variance between the continental longitudes (~15oN-20oN) and the smaller values over 730	  
the near-equatorial Indian Ocean. Of the CMIP5 models, the MIROC-ESM model has the 731	  
smallest pattern correlation with observations, 0.55. It exhibits pockets of strong 732	  
intraseasonal variability, with a pronounced variance minimum near 10oN over the Indian 733	  
Ocean that unrealistically separates the variance maxima over the continental latitudes 734	  
(~20oN) and the near-equatorial region (Fig. 13c). The MIROC5 model, which will be 735	  
discussed in more detail below, has intermediate skill, with a pattern correlation of 0.81 736	  
(Fig. 13d). The CMIP5 MMM, Fig. 13e, has larger skill than the best model and the 737	  
CMIP3 MMM (Fig. 13f and Table 3). Furthermore, the magnitude of the intraseasonal 738	  
variance in the CMIP5 MMM is more realistic than that from the CMIP3 MMM. 739	  

The observed BSISV life cycle is presented in Fig. 14. The 20-100 day bandpass 740	  
filtered OLR anomalies for JJAS 1979-2007 are projected on to the Day 0 CsEOF pattern 741	  
of Annamalai and Sperber (2005). Using lag regression, the resulting PC (referred to as 742	  
PC-4 in Sperber and Annamalai 2008) is regressed back onto the filtered OLR to obtain 743	  
the spatio-temporal evolution of the BSISV. As in Sperber and Annamalai (2008), 744	  
projection of the model 20-100 day bandpass filtered OLR onto the observed Day 0 745	  
CsEOF pattern ensures that the models are analyzed using a uniform approach, which 746	  
addresses the question: How well do the models simulate the observed BSISV? The 747	  
observed results in Fig. 14 are plotted where the regressions are statistically significant, 748	  
assuming every pentad is independent. As seen in Fig. 14a and 14b, the enhanced 749	  
convection first begins near the east coast of equatorial Africa, and extends into the 750	  
western Indian Ocean. Over the central and eastern Indian Ocean suppressed convection 751	  
dominates. From Day -5 through Day 0, Figs. 14c and 14d, the enhanced convection over 752	  
the Indian Ocean amplifies and extends eastward to the Maritime Continent, while a tilted 753	  
band of suppressed convection dominates to the north, extending from the Arabian Sea to 754	  
the western Pacific. By Day 5, Fig. 14e, the enhanced convection bifurcates near the 755	  
equator over the Indian Ocean, with the strongest convective anomalies extending 756	  
southeastward from the Arabian Sea and India to New Guinea. At this time the 757	  
suppressed convection dominates over the western Pacific near 15oN. By Day 10, Fig. 758	  
14f, the northwest to southeast tilted region of enhanced convection extends from the 759	  
Arabian Sea to the equatorial central Pacific. This structure arises due to northward 760	  
propagation of convective anomalies in the vicinity of the Indian longitudes, as the 761	  
equatorial convective anomalies propagate eastward from the Indian Ocean to the 762	  
Maritime Continent/west Pacific. The tilt arises due to the favorable vertical wind shear 763	  
and the shedding of Rossby waves over this domain during boreal summer (Lau and Peng 764	  
1990; Wang and Xie 1997; Annamalai and Sperber 2005). Over the west Pacific near 765	  
15oN the suppressed convection weakens and diminishes in extent. With the development 766	  
of suppressed convection over the equatorial Indian Ocean there is a quadrapole pattern 767	  
of convective anomalies that persists through Day 15, Fig. 14g, that then weakens by Day 768	  
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20, Fig. 14h. The tilted band of enhanced convection weakens, and the suppressed 769	  
convection over the Indian Ocean begins to dominate. These stages in the BSISV 770	  
lifecycle, obtained via regression (the approach needed to analyze the models), compare 771	  
well with the evolution of the CsEOF’s of Annamalai and Sperber (2005, see their Fig. 772	  
2), with which they have pattern correlations of 0.83 or larger. 773	  

The skill of the models in simulating the observed 20-100 bandpass filtered variance 774	  
and the BSISV lifecycle is presented in Fig. 15. The filtered variance accounts for both 775	  
standing and propagating components while the BSISV is the leading propagating mode. 776	  
The skill for the filtered variance is based on the pattern correlation of the model with 777	  
observations. The model skill of the BSISV life cycle is the space-time pattern correlation 778	  
of the best matching lag regressions to the Day -15, Day -10, Day -5, Day 0, Day 5, Day 779	  
10, Day 15, and Day 20 patterns from the observed BSISV CsEOF (Annamalai and 780	  
Sperber 2005). Data at all gridpoints over the region 40oE-180oE, 30oS-30oN are used for 781	  
the calculation of the skill scores. The results indicate that at better than the 1% 782	  
significance level there is a statistically significant relationship between the filtered 783	  
variance pattern and the BSISV life cycle for both the CMIP5 and CMIP3 models. This 784	  
suggests that the location and strength of the filtered variance maxima are largely 785	  
determined by the propagating BSISV. The skill of the CMIP5 MMM is slightly larger 786	  
than the CMIP3 MMM, and the filtered variance pattern tends to be better simulated than 787	  
the BSISV life cycle. 788	  

To facilitate the evaluation of the BSISV life cycle, animations of the BSISV life 789	  
cycle from the CMIP5 models and observations can be found at: http://www-790	  
pcmdi.llnl.gov/projects/ken/cmip5_bsisv/index.html, while the animations from the 791	  
CMIP3 and CMIP-2+ models analyzed by Sperber and Annamalai (2008) can be found 792	  
at: http://www-pcmdi.llnl.gov/projects/ken/. In Sperber and Annamalai (2008), only two 793	  
models showed appreciable skill at representing the BSISV life cycle, including the 794	  
northwest to southeast tilted band of enhanced convection. Both coupled models were 795	  
Max Planck Institute derived models that used the same atmospheric model (European 796	  
Centre Hamburg-4; ECHAM4). In CMIP5, the MIROC5 model has the largest space-797	  
time correlation of the BSISV life cycle with observations (0.69). As seen in Fig. 16, the 798	  
BSISV life cycle of the MIROC5 model exhibits many of the observed features seen in 799	  
Fig. 14, especially the strongly suppressed convection over the Indian Ocean on Day -15 800	  
(Fig. 16a). It also represents well the amplification and eastward propagation of enhanced 801	  
convection over the equatorial Indian Ocean and the tilted band of suppressed convection 802	  
to the north from Day -10 through Day 0 (Figs. 16b-16d). The bifurcation of enhanced 803	  
convection over the central/eastern Indian Ocean is seen on Day 5 (Fig. 16e), though the 804	  
strongest anomalies are incorrectly located south of the equator. Although present from 805	  
Day 10 through Day 20 (Figs. 16f-16h), the tilted region of enhanced convection is not as 806	  
spatially contiguous as observed, and the anomalies are weaker than observed. Another 807	  
shortcoming of the simulation is that the convective anomalies over the western Pacific 808	  
are not as strong as observed. Even so, the simulation of the BSISV life cycle by 809	  
MIROC5 is an important step forward, since an atmospheric model with a different 810	  
formulation from ECHAM4 shows the capability to simulate important aspects of the 811	  
BSISV life cycle, especially the northwest to southeast tilted band of enhanced 812	  
convection. Despite using the same convection scheme as ECHAM4, the more recent 813	  
MPI derived models, MPI-ESM-LR and echam5/mpi-om, do not properly represent the 814	  
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tilted band of convection. Subsequent to ECHAM4, replacement and/or changes to the 815	  
grid-scale condensation scheme and radiation schemes have occurred in the MPI-based 816	  
models. Since the MJO has been shown to be sensitive to cloud-radiation interaction (Ma 817	  
and Kuang 2011), it has been suggested that these modifications may account for the 818	  
reduced skill in simulating MJO in these more recent MPI models (D. Kim, personal 819	  
communication, 2012).  820	  

MRI-CGCM3, and to a lesser extent GFDL-ESM2G, also show a tilted region of 821	  
convection, but the extension into the western equatorial Pacific occurs after the 822	  
northward propagation reaches 20oN over India and the Bay of Bengal, whereas in 823	  
observations the eastward extension and northward propagation occur in tandem. Mizuta 824	  
et al. (2012) suggest that the improvement of the BSISV in the MRI model is due to 825	  
modification of the convection scheme, which allows for higher levels of convective 826	  
available potential energy to build-up before the instability is released. Rectifying model 827	  
errors, including those related to SST and tropospheric temperature over the Indian 828	  
Ocean, may result in a more realistic representation of the northward propagation of the 829	  
BSISV, and consequently the interannual variability of the Indian monsoon (Joseph et al. 830	  
2012). Excepting those CMIP5 models that have westward propagation over the 831	  
equatorial Indian Ocean, FGOALS-s2 and NorESM1-M, the majority of models have 832	  
difficulty in getting the enhanced equatorial convection to propagate into the western 833	  
Pacific, consistent with the CMIP3 results of Sperber and Annamalai (2008). 834	  

Given the wide-range of model performance in representing the BSISV life cycle, it 835	  
was surprising to find that the CMIP5 and CMIP3 MMM’s were more skillful than the 836	  
individual models. The life cycle of the CMIP5 MMM is shown in Fig. 17. In an effort to 837	  
show statistical significance, the averages at each gridpoint were calculated if more than 838	  
half of the models had a statistically significant convective anomaly (irrespective of sign) 839	  
at that time lag. As such, the anomalies are slightly larger than those from the “true” 840	  
MMM used for the skill score calculation in Fig. 15, in which the arithmetic mean of all 841	  
models was taken at each gridpoint, at each time lag. With the exception of representing 842	  
the tilted band of suppressed convection that is observed on Day -10 (compare Fig. 17b 843	  
with Fig. 14b), the CMIP5 MMM represents the major aspects of the life cycle of the 844	  
BSISV. Furthermore, compared to MIROC5, the CMIP5 MMM better represents the 845	  
spatial extent and magnitude of the convective anomalies over the western Pacific 846	  
(compare Figs. 17c-17h with Figs. 16c-16h). These astounding results suggest the 847	  
potential for making skillful multi-model forecasts of the BSISV. 848	  

Future work on the BSISV will include a more detailed evaluation to assess if the 849	  
physical processes involved are consistent between the observations and the most skillful 850	  
models, to evaluate the impact of climate change on the BSISV, and explore the 851	  
usefulness of the MMM in this regard. 852	  
 853	  
 854	  
7 Discussion and Conclusions 855	  
 856	  
The CLIVAR Asian-Australian Monsoon Panel Diagnostics Task Team selected the 857	  
diagnostics presented herein. These diagnostics provide a broad overview of the state-of-858	  
the-art in simulating boreal summer Asian monsoon as of 2011. The most important take 859	  
away message is that in terms of the MMM, the CMIP5 models outperform the CMIP3 860	  
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models for all of the diagnostics. While the CMIP5 MMM gains in terms of the skill 861	  
scores are incremental, additional supporting evidence is noted, such as the improved 862	  
amplitude of precipitation in the CMIP5 MMM relative to the CMIP3 MMM. Even so, 863	  
there are systematic errors that are consistent between the two vintages of models. For 864	  
example, the time mean rainfall error has a consistent pattern between CMIP5 and 865	  
CMIP3 (Figs. 1i and 1j), though the amplitude of the error is smaller in CMIP5 relative to 866	  
CMIP3. Part of the error reduction is the better simulation of the precipitation maxima in 867	  
the vicinity of steep orography. Other systematic errors that are common to both sets of 868	  
models include (1) late monsoon onset over India and poor representation of the annual 869	  
cycle of the Indian monsoon and oceanic rainfall bands, (2) the monsoon domain not 870	  
extending far enough north over China, Korea, and Japan, and (3) the monsoon domain 871	  
extending too far to the east over the Pacific Ocean (Figs. 6a-6e). For the time mean state 872	  
and the interannual variability over East Asia, the 850hPa wind is better simulated than 873	  
the precipitation (Figs. 3 and 12a). On intraseasonal time scales, changes to convective 874	  
parameterizations have contributed to new models representing important aspects of the 875	  
BSISV (Mizuta et al. 2012). The MIROC5 model (Watanabe et al. 2010) provides a 876	  
credible simulation of the leading mode of the BSISV (Fig. 16). This is an important 877	  
advance, since heretofore only ECHAM4-based models showed similar capability 878	  
(Sperber and Annamalai 2008). Despite the poor representation of the BSISV in most of 879	  
the models, especially seen in the animations, the CMIP5 MMM outperforms the 880	  
individual models (Figs. 15 and 17). This suggests that a multi-model approach to 881	  
forecasting the BSISV might be fruitful. 882	  

Given that the aim of this paper has been a comparison of CMIP5 relative to CMIP3, 883	  
we have taken the basic approach of generating MMMs using all models (with the 884	  
exception of the monsoon domain extent [Fig. 6] and the BSISV [Fig. 17]), even though 885	  
in some cases individual institutions have made multiple submissions with slightly 886	  
different model versions. More exhaustive approaches to assessing model independence 887	  
and weighting can be applied (Mason and Knutti 2011), but this is beyond the scope of 888	  
this overview. Furthermore, skill for some phenomena, such as the relationship between 889	  
AIR and ENSO and the impact of climate change on this teleconnection, requires the 890	  
joint assessment of multiple facets of model performance, including the climatology of 891	  
rainfall over India, and the fidelity with which ENSO is simulated (Annamalai et al. 892	  
2007, 2012b). However, for assessing larger scale impacts, incorporating model quality 893	  
information using parametric and non-parametric weighting approaches based on mean 894	  
state, annual cycle, and El Niño variability has been shown to NOT affect conclusions in 895	  
climate detection and attribution studies (Santer et al. 2009). Thus, there is no unique best 896	  
approach to generating MMMs. We suggest that the skill scores presented herein be used 897	  
as a starting point for selecting subsets of models for more in-depth analysis of boreal 898	  
summer Asian monsoon phenomena. Furthermore, given the overlap of skill between 899	  
individual CMIP5 and CMIP3 models, it is suggested that the CMIP5 and CMIP3 models 900	  
be viewed as a joint resource for investigating processes and climate change impacts, 901	  
rather than dismissing the CMIP3 models simply because they predate the CMIP5 902	  
models. 903	  

In the figures we have presented the range of model performance for each of the 904	  
diagnostics. In many instances, only fractions of a percent separate one model from the 905	  
next in terms of skill. In an effort to look for consistency in skill, in Tables 2 and 3 we 906	  
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have highlighted the five models that have the largest skill scores for each diagnostic. 907	  
This approach reveals numerous common features: (1) NorESM1-M and CCSM4, which 908	  
use the same atmospheric model, consistently finish in the top five in 9/14 and 7/12 909	  
categories, respectively. Both models are top five finishers in simulating the rainfall 910	  
climatology, and most aspects of the climatological annual cycle of pentad rainfall. The 911	  
former model also performs consistently well in representing the interannual variability; 912	  
(2) the MIROC5 and MIROC4h models have complimentary skill in representing the 913	  
climatological annual cycle of pentad rainfall; (3) the IPSL-CM5a-LR and IPSL-CM5a-914	  
MR models are top five performers in representing the interannual variability of the 915	  
Indian monsoon; (4) several of the GFDL models are top five performers in representing 916	  
the climatology and the interannual variability of the 850hPa wind; and (5) the ECHAM 917	  
based models tend to have large skill scores on intraseasonal time scales. Given our focus 918	  
on a limited set of boreal summer Asian monsoon diagnostics, we emphasize that the 919	  
discussion of skill given in this paper is not necessarily representative of overall model 920	  
performance. 921	  

The diagnostics and associated skill estimates presented are not exhaustive in scope, 922	  
and given the regional complexity of the monsoon (Zhou et al. 2011), there is ample 923	  
scope for additional analysis of other aspects of monsoon variability and change (e.g. 924	  
Zhou et al. 2009c; Zhou and Zou 2010; Boo et al. 2011, Li and Zhou 2011; Meehl et al. 925	  
2012). Furthermore, it is important to more fully diagnose the multitude of processes and 926	  
interactions that are associated with the different aspects of monsoon variability. 927	  
Examples of more in-depth questions to address include (1) evaluating the partitioning of 928	  
rainfall into convective vs. large-scale components, (2) assessing how well the models 929	  
represent the main rain-bearing synoptic systems, and (3) investigating if there is a 930	  
relationship between the ability of the models to represent the BSISV and simulate the 931	  
onset of the monsoon correctly, especially over India where onset is systematically too 932	  
late. Through such diagnoses, we will gain an improved understanding of model 933	  
processes and scale interactions. We may also gain confidence that subsets of the models 934	  
are more reliable for investigating the impact of climate change on the monsoon (e.g. 935	  
Annamalai et al. 2007, 2012b). The analysis presented here, and for multi-model seasonal 936	  
forecasts of Indian summer monsoon (Rajeevan et al. 2012), highlight the beneficial 937	  
impact that parameterization development and increased horizontal resolution have had 938	  
on the simulation of boreal summer monsoon climate and variability. 939	  
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Table Captions 1185	  
 1186	  
Table 1: Modeling group, model designation, and horizontal and vertical resolution of the 1187	  
atmospheric and oceanic models, respectively. Capitalized designations are CMIP5 1188	  
models, and lower-case designations are CMIP3 models 1189	  
 1190	  
Table 2: Skill scores for the June-September climatology and the climatological annual 1191	  
cycle. The results are given for observations, the MMM’s, and for the CMIP5 and CMIP3 1192	  
models. The observed skill for precipitation is between GPCP and CMAP, and the skill 1193	  
for the 850hPa wind (850hPa) is between ERA40 and JRA25. The model pattern 1194	  
correlations for the precipitation climatology (Pr) are calculated with respect to GPCP 1195	  
precipitation. For the 850hPa wind climatology (850hPa), the model pattern correlations 1196	  
are calculated with respect to ERA40 850hPa wind. For the climatologies the skill is 1197	  
calculated over the region 40oE-160oE, 20oS-50oN. For the time-latitude (T-Lat) 1198	  
climatological annual cycle of monthly rainfall averaged between 70oE-90oE, the model 1199	  
pattern correlations are calculated with respect to GPCP precipitation over the region 1200	  
10oS-30oN, for May-October (see Section 4.1). For the climatological annual cycle of 1201	  
pentad rainfall, the model pattern correlations are calculated with respect to GPCP 1202	  
precipitation for the pentads of onset, peak, withdrawal, and duration of the monsoon 1203	  
over the region 50oE-180oE, 0o-50oN (see Section 4.2). The categorical skill scores, hit 1204	  
rate and threat score, indicate how well a model represents the spatial domain of the 1205	  
monsoon, where a value = 1 indicates perfect agreement between model and 1206	  
observations. Missing table entries occur for models that did not have available data for 1207	  
analysis. The top five models with the largest skill scores for each diagnostic are 1208	  
highlighted 1209	  
 1210	  
Table 3: Skill scores for the Indian Monsoon and East Asian Monsoon interannual 1211	  
variability and the boreal summer intraseasonal variability (BSISV). The results are given 1212	  
for observations, the MMM’s, and for the CMIP5 and CMIP3 models. The interannual 1213	  
variations of the ENSO-Monsoon relationship are characterized by (1) the lag 0 1214	  
correlation between JJAS anomalies of all-India rainfall and Niño3.4 SST (AIR/N3.4). 1215	  
The AIR is for land-only gridpoints over the region 65oE-95oE, 7oN-30oN. The 1216	  
observations are for the anomalies of Rajeevan rainfall vs. HadISST SST for 1961-1999, 1217	  
and (2) the pattern correlations of JJAS precipitation anomalies (Pr) obtained from 1218	  
regression with JJAS anomalies of Niño3.4 SST. The model pattern correlations are 1219	  
calculated with respect to GPCP anomalies that were obtained by regression with the 1220	  
Niño3.4 SST anomalies from the NCEP/NCAR reanalysis (1979-2007). The pattern 1221	  
correlations are calculated over the region 60oE-100oE, 0o-30oN. For observations the 1222	  
skill is between GPCP and CMAP. For the East Asian Monsoon, the negative of the 1223	  
June-August Wang and Fan (1999) zonal wind shear index (WFN, see Section 5.2) is 1224	  
regressed against June-August anomalies of precipitation and 850hPa wind. The model 1225	  
pattern correlations are calculated with respect to GPCP rainfall anomalies and JRA 1226	  
850hPa wind anomalies that were obtained by regression with the JRA25 WFN. The 1227	  
pattern correlations are calculated over the region 100oE-140oW, 0o-50oN. For 1228	  
observations the skill is between GPCP/JRA25 and CMAP/NCEP-NCAR Reanalysis. 1229	  
For BSISV, the skill is (1) the pattern correlation of June-September 20-100 day 1230	  



	   28	  

bandpass filtered OLR variance between the model (1961-1999) and AVHRR OLR 1231	  
(1979-2006). For observations the skill is for AVHRR OLR for 1979-2006 vs. AVHRR 1232	  
OLR for 1979-1995, and (2) the spatio-temporal correlation of the model BSISV life 1233	  
cycle vs. that from the observed cyclostationary EOF (CsEOF) analysis of Annamalai 1234	  
and Sperber (2005). The life cycle of the BSISV is obtained by first projecting 20-100 1235	  
day filtered OLR from observations (1979-2006) and the models (1961-1999) on to the 1236	  
Day 0 pattern of the observed CsEOF. The resulting PC is used for lag regression against 1237	  
the 20-100 day filtered OLR with the spatio-temporal correlation between model and 1238	  
observation being calculated for Day -15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 1239	  
15, and Day 20 . The skill scores for the intraseasonal variability are calculated over the 1240	  
region 40oE-180oE, 30oS-30oN. Missing table entries occur for models that did not have 1241	  
available data for analysis. The top five models with the largest skill scores for each 1242	  
diagnostic are highlighted 1243	  
  1244	  
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Table	  1	  1245	  

Modelling Group Model Designation AGCM horizontal/vertical 
resolution 

OGCM horizontal/vertical 
resolution 

Beijing Climate 
Center, China 
Meteorological 
Administration 

BCC-CSM1.1 T42 L26 1o lon x 1.33o lat L40 

Bjerknes Center 
for Climate 
Research 

bccr-bcm2.0 T63 L31 1.5o lon x 0.5o -1.5ocos(lat) L35 

Canadian Centre 
for Climate 
Modelling and 
Analysis 

CanESM2 
cgcm3.1 (t47) 
cgcm3.1 (t63) 

T63 L35 
T47 L31 
T63 L31 

256 x 192 L40 
192 x 96 L29 

256 x 192 L31 

National Center 
for Atmospheric 
Research 

CCSM4 
ccsm3 
pcm1 

1.25o lon x 0.9o lat L26 
T85 L26 
T42 L 18 

1.1o lon x 0.27o-0.54o lat L60 
384 x 288 L32 
384 x 288 L32 

Centre National de 
Recherches 
Meteorologiques/C
entre Europeen de 
Recherche et 
Formation 
Avancees en 
Calcul Scientifique 

CNRM-CM5 
cnrm-cm3 

TL127 L31 
T42 L45 

1o lon x 1o lat L42 
180 x 170 L33 

Commonwealth 
Scientific and 
Industrial 
Research 
Organization in 
collaboration with 
Queensland 
Climate Change 
Centre of 
Excellence 

CSIRO-Mk3.6.0 
csiro-mk3.0 
csiro-mk3.5 

T63 L18 
T63 L18 
T63 L18 

1.875o lon x ~0.9375o lat L31 
1.875 o lon x 0.925 o lat L31 
1.875 o lon x 0.925 o lat L31 

Meteorological 
Institute of the 
University of 
Bonn, 
Meteorological 
Research Institute 
of KMA, and 
Model and Data 
group 

echo-g T30 L19  T42 L20 

LASG, Institute of 
Atmospheric 
Physics, Chinese 
Academy of 
Sciences and 
CESS,Tsinghua 
University 

FGOALS-g2 128 x 60 L26 360 x 196 L30 
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LASG, Institute of 
Atmospheric 
Physics, Chinese 
Academy of 
Sciences 

FGOALS-s2 
fgoals-g1.0 

R42 L26 
T42 L26 

0.5o-1o lon x 0.5o-1o lat L 
1o lon x 1o lat L16 

NOAA 
Geophysical Fluid 
Dynamics 
Laboratory 

GFDL-CM3 
GFDL-ESM2G 
GFDL-ESM2M 

gfdl-cm2.0 
gfdl-cm2.1 

C48 L48 
M45 L24 
M45 L24 
N45 L24 
N45 L24 

360 x 200 L50 
360 x 210 L63 
360 x 200 L50 

1o lon x 0.33o -1o lat L50 
1o lon x 0.33o -1o lat L50 

NASA Goddard 
Institute for Space 
Studies 

GISS-E2-H 
GISS-E2-R 

giss-aom 

2.5o lon x 2o lat L40 
2.5o lon x 2o lat L40 

90 x 60 L12 

1.25o lon x 1o lat L32 
1o lon x ~1o lat L32 

90 x 60 L16 
Met Office Hadley 
Centre 

HadCM3 
HadGEM2-CC 
HadGEM2-ES 
ukmo-hadcm3 

ukmo-hadgem1 

N48 L19 
N96 L60 
N96 L38 

2.5o lon x 3.75o lat L19 
N96 L38 

1.25o lon x 1.25o lat L20 
1o lon x 0.3o-1.0o lat L40 
1o lon x 0.3o-1.0o lat L40 
1.25o lon x 1.25o lat L20 

1o lonn x 0.3o-1.0o lat L40 
Instituto Nazionale 
di Geofisica e 
Volcanologia 

ingv-sxg T106 L19 1o lon x 1o lat L31 

Institute for 
Numerical 
Mathematics 

INM-CM4 
inm-cm3.0 

 
5o lon x 4o lat L21 

 
2.5o lon x 2o lat L33 

Institut Pierre-
Simon Laplace 

IPSL-CM5A-LR 
IPSL-CM5A-MR 

ipsl-cm4 

96 x 95 L39 
144 x 143 L39 

96 x 72 L19 

2o lon x 2o lat L31 
2o lon x 2o lat L31 
2o lon x 2o lat L31 

Japan Agency for 
Marine-Earth 
Science and 
Technology, 
Atmosphere and 
Ocean Research 
Institute (The 
University of 
Tokyo), and 
National Institute 
for Environmental 
Studies 

MIROC-ESM 
MIROC-ESM-CHEM 

T42 L80 
T42 L80 

256 x 192 L44 
256 x 192 L44 

Atmosphere and 
Ocean Research 
Institute (The 
University of 
Tokyo), National 
Institute for 
Environmental 
Studies, and Japan 
Agency for 
Marine-Earth 
Science and 
Technology 

MIROC4h 
MIROC5  

miroc3.2(hires) 
miroc3.2(medres) 

T213 L56 
T85 L40 

T106 L56 
T42 L20 

1280 x 912 L48 
256 x 224 L50 

 T106 L48 
256 x 192 L44 

Max Planck 
Institute for 
Meteorology 

MPI-ESM-LR 
echam5/mpi-om 

T63 L47 
T63 L32 

GR15 L40 
1o lon x 1o lat L42 
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Meteorological 
Research Institute 

MRI-CGCM3 
mri-cgcm2.3.2 

TL159 L48 
T42 L30 

1o lon x 0.5o lat L51 
256 x 192 L44 

Norwegian 
Climate Centre 

NorESM1-M 144 x 96 L26 384 x 320 L53 

	   	  1246	  
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Table	  2	  1247	  

Model Climatology Climatological Annual Cycle Rainfall 
 Pr 850hPa T-Lat Onset Peak Withd. Duration Hit Rate Threat 
Observations 0.927 0.986 0.887 0.748 0.834 0.830 0.671 0.893 0.744 
CMIP5 MMM 0.898 0.976 0.674 0.664 0.786 0.792 0.605 0.844 0.625 
CMIP3 MMM 0.865 0.967 0.657 0.510 0.733 0.712 0.380 0.821 0.573 
BCC-CSM-1 0.808 0.928 0.338       
bccr-bcm2.0 0.733 0.933 0.639       
CanESM2 0.815 0.951 0.552 0.298 0.451 0.543 0.164 0.782 0.517 
cgcm3.1 (t47) 0.782 0.935 0.465 0.063 0.476 0.454 0.109 0.766 0.522 
cgcm3.1 (t63) 0.796 0.944 0.461 0.155 0.432 0.384 0.154 0.758 0.508 
CCSM4 0.849 0.952 0.678 0.581 0.717 0.798 0.570 0.836 0.619 
ccsm3 0.748 0.913 0.390 0.394 0.481 0.459 0.346 0.757 0.487 
pcm1 0.634 0.793 0.364       
CNRM-CM5 0.852 0.974 0.567 0.674 0.638 0.750 0.656 0.796 0.513 
cnrm-cm3 0.717 0.908 0.763 0.489 0.596 0.633 0.329 0.749 0.437 
CSIRO-Mk3.6.0 0.713 0.896 0.232 0.006 0.451 0.729 0.331 0.762 0.497 
csiro-mk3.0 0.803 0.889 0.385 0.196 0.461 0.601 0.147 0.790 0.495 
csiro-mk3.5 0.796 0.923 0.171 0.287 0.474 0.665 0.350 0.788 0.540 
FGOALS-g2 0.766 0.923 0.455       
FGOALS-s2 0.807 0.916 0.613 0.601 0.596 0.649 0.531 0.812 0.537 
fgoals-g1.0 0.690 0.803 0.587 -0.050 0.672 0.785 0.097 0.770 0.460 
GFDL-CM3 0.844 0.941 0.742 0.458 0.407 0.546 0.406 0.796 0.532 
GFDL-ESM2G 0.821 0.955 0.727 0.370 0.560 0.660 0.328 0.841 0.615 
GFDL-ESM2M 0.828 0.958 0.676 0.490 0.714 0.730 0.383 0.824 0.586 
gfdl-cm2.0 0.826 0.954 0.673 0.715 0.540 0.624 0.495 0.812 0.559 
gfdl-cm2.1 0.843 0.957 0.681 0.453 0.662 0.731 0.485 0.825 0.587 
GISS-E2-H 0.631 0.902 0.318       
GISS-E2-R 0.730 0.912 0.235       
giss-aom 0.780 0.894 0.282 0.359 0.614 0.540 0.203 0.774 0.457 
HadCM3 0.773 0.931 0.550 0.555 0.447 0.519 0.452 0.873 0.675 
HadGEM2-CC 0.795 0.927 0.376 0.526 0.659 0.634 0.317 0.777 0.543 
HadGEM2-ES 0.800 0.933 0.356 0.562 0.620 0.648 0.367 0.769 0.538 
ukmo_hadcm3 0.778 0.932 0.529       
ukmo_hadgem1 0.798 0.938 0.386       
ingv-sxg 0.814 0.950 0.629 0.277 0.575 0.724 0.417 0.797 0.516 
INM-CM4 0.742 0.864 0.561 0.153 0.616 0.649 0.224 0.810 0.560 
inm-cm3.0 0.619 0.837 0.497 -0.125 0.331 0.592 -0.064 0.795 0.517 
IPSL-CM5A-LR 0.797 0.926 0.442 0.399 0.540 0.712 0.482 0.798 0.515 
IPSL-CM5A-MR 0.809 0.935 0.501 0.421 0.575 0.769 0.591 0.787 0.501 
ipsl-cm4 0.743 0.907 0.214 0.215 0.495 0.634 0.254 0.786 0.468 
MIROC-ESM 0.617 0.824 0.518 0.391 0.610 0.666 0.394 0.756 0.434 
MIROC-ESM-CHEM 0.642 0.831 0.538 0.518 0.669 0.653 0.423 0.752 0.433 
MIROC4h 0.802 0.940 0.573 0.674 0.626 0.766 0.620 0.843 0.611 
MIROC5 0.842 0.940 0.778 0.362 0.778 0.851 0.652 0.808 0.531 
miroc3.2(hires) 0.761 0.914 0.523 0.483 0.383 0.709 0.568 0.792 0.486 
miroc3.2(medres) 0.765 0.919 0.513 0.633 0.402 0.571 0.503 0.744 0.384 
MPI-ESM-LR 0.792 0.949 0.664 0.316 0.579 0.652 0.472 0.781 0.535 
echam5/mpi-om 0.800 0.942 0.664 0.265 0.412 0.537 0.337 0.800 0.547 
echo_g 0.803 0.911 0.522 0.008 0.041 0.368 0.189 0.787 0.507 
MRI-CGCM3 0.752 0.886 0.195 0.024 0.619 0.535 -0.014 0.751 0.465 
mri-cgcm2.3.2 0.726 0.885 0.538 0.471 0.345 0.550 0.346 0.746 0.473 
NorESM1-M 0.848 0.913 0.634 0.558 0.723 0.791 0.565 0.838 0.624 



	   33	  

Table	  3	  1248	  

Model Indian Monsoon East Asian Monsoon BSISV 
 AIR/N3.4 Pr Pr 850hPa Variance Life Cycle 

Observations -0.533 0.798 0.959 0.989 0.995 0.893 
CMIP5 MMM  0.616 0.888 0.972 0.903 0.766 
CMIP3 MMM  0.600 0.799 0.969 0.895 0.754 
BCC-CSM-1 -0.250 -0.140 0.695 0.930   
bccr-bcm2.0 -0.430 0.249 0.670 0.951   
CanESM2 -0.273 0.014 0.672 0.861 0.846 0.651 
cgcm3.1 (t47) -0.335 0.404 0.625 0.899 0.727 0.605 
cgcm3.1 (t63) -0.182 0.173 0.703 0.938 0.717 0.604 
CCSM4 -0.556 0.337 0.789 0.947   
ccsm3 -0.561 0.264 0.722 0.800 0.695 0.588 
pcm1 -0.356 0.293 0.232 0.870   
CNRM-CM5 -0.307 0.245 0.642 0.894   
cnrm-cm3 -0.484 0.419 0.313 0.727 0.570 0.600 
CSIRO-Mk3.6.0 -0.487 0.162 0.346 0.858 0.809 0.645 
csiro-mk3.0 -0.403 -0.112 0.629 0.939 0.830 0.581 
csiro-mk3.5 -0.719 0.137 0.569 0.924   
FGOALS-g2 -0.052 0.238 0.739 0.936   
FGOALS-s2 0.114 0.096 0.787 0.921 0.734 0.608 
fgoals-g1.0 -0.747 0.276 0.415 0.426 0.271 0.438 
GFDL-CM3 -0.442 0.192 0.315 0.867   
GFDL-ESM2G -0.289 0.251 0.458 0.972 0.753 0.643 
GFDL-ESM2M -0.187 0.251 0.606 0.955   
gfdl-cm2.0 -0.667 0.336 0.668 0.976 0.818 0.677 
gfdl-cm2.1 -0.494 0.412 0.390 0.919 0.850 0.712 
GISS-E2-H -0.094 0.254 0.586 0.918   
GISS-E2-R -0.366 0.379 0.656 0.906   
giss-aom 0.094 0.189 0.117 0.754 -0.070 0.395 
HadCM3 -0.299 0.180 0.773 0.897   
HadGEM2-CC -0.335 -0.068 0.787 0.935 0.857 0.641 
HadGEM2-ES -0.344 0.216 0.839 0.949 0.862 0.651 
ukmo-hadcm3 -0.374 0.323 0.758 0.947   
ukmo-hadgem1 -0.446 0.154 0.744 0.912   
ingv-sxg -0.455 0.313 0.513 0.925   
INM-CM4 -0.033 0.110 -0.047 0.816 0.639 0.562 
inm-cm3.0 -0.258 -0.073 0.520 0.850   
IPSL-CM5A-LR -0.700 0.611 0.450 0.708 0.791 0.654 
IPSL-CM5A-MR -0.763 0.636 0.532 0.749 0.827 0.635 
ipsl-cm4 -0.554 0.347 0.675 0.787 0.785 0.648 
MIROC-ESM 0.088 0.061 0.596 0.694 0.548 0.516 
MIROC-ESM-CHEM -0.104 0.045 0.687 0.882 0.554 0.528 
MIROC4h -0.327 0.529 0.723 0.921 0.736 0.625 
MIROC5 -0.321 0.010 0.567 0.946 0.805 0.691 
miroc3.2(hires) 0.080 -0.009 0.643 0.915 0.666 0.543 
miroc3.2(medres) -0.329 0.234 0.719 0.928 0.800 0.575 
MPI-ESM-LR -0.291 0.401 0.283 0.899 0.874 0.681 
echam5/mpi-om -0.573 0.560 0.230 0.817 0.873 0.721 
echo_g -0.554 0.113 0.664 0.914 0.810 0.702 
MRI-CGCM3 -0.274 0.338 0.819 0.937 0.782 0.628 
mri-cgcm2.3.2 -0.424 0.107 0.570 0.931 0.575 0.654 
NorESM1-M -0.690 0.522 0.811 0.959 0.833 0.627 
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Figure Captions 1249	  
 1250	  
Fig. 1 a-e JJAS precipitation rate climatology from a GPCP, b CNRM-CM5, c MIROC-1251	  
ESM, d CMIP5 MMM, and e CMIP3 MMM. Also given in a is the pattern correlation of 1252	  
GPCP with CMAP, and in b-e are the model pattern correlations with GPCP over the 1253	  
region 40oE-160oE, 20oS-50oN. f (CMAP) minus (GPCP), g-j as b-e but for (model) 1254	  
minus (GPCP). The units are (mm day-1). GPCP and CMAP data is from 1979-2007 and 1255	  
the model data is from 1961-1999 1256	  
  1257	  
Fig. 2 a-e JJAS 850hPa wind climatology from a ERA40, b CNRM-CM5, c pcm1, d 1258	  
CMIP5 MMM, and e CMIP3 MMM. Also given in a is the pattern correlation of ERA40 1259	  
with JRA25, and in b-e are the model pattern correlations with ERA40 over the region 1260	  
40oE-160oE, 20oS-50oN. (f) (JRA25) minus (ERA40), g-j as b-e but for (model) minus 1261	  
(ERA40). The units are (ms-1). ERA40 and the model data are from 1961-1999, and 1262	  
JRA25 data is from 1979-2007 1263	  
 1264	  
Fig. 3 Scatterplot of the pattern correlation with observations of simulated JJAS 850hPa 1265	  
wind climatology vs. the pattern correlation with observations of simulated JJAS 1266	  
precipitation climatology. The skill is relative to ERA40 and GPCP over the region 40oE-1267	  
160oE, 20oS-50oN 1268	  
  1269	  
Fig. 4 a-f Annual cycle climatology for rainfall rate averaged between 70oE-90oE from a 1270	  
GPCP, b CMAP, c MIROC5, d csiro-mk3.5, e CMIP5 MMM, and f CMIP3 MMM. Also 1271	  
given in b-f is the pattern correlation with GPCP over the region 10oS-30oN, for May-1272	  
September (the dashed region in a). The units are (mm day-1). g Models stratified by their 1273	  
pattern correlation with GPCP. GPCP and CMAP data are from 1979-2007 and the model 1274	  
data is from 1961-1999 1275	  
 1276	  
Fig. 5 The relative rainfall rate over the Bay of Bengal (85oE-90oE, 7.5oN-20oN) from 1277	  
GPCP data. The 5 mm day-1 threshold is used to define the pentads of onset and 1278	  
withdrawal of the monsoon. To calculate the relative rainfall rate, the pentad time series 1279	  
is smoothed with a five pentad running mean. The January mean rainfall is then removed 1280	  
from each pentad, resulting in the relative rainfall rate. See Section 4.2 for more details 1281	  
 1282	  
Fig. 6 Monsoon onset pentad a GPCP, b gfdl cm2.0, c inm-cm 3.0, d CMIP5 MMM, and 1283	  
e CMIP3 MMM. Monsoon peak pentad f GPCP, g MIROC5, h echo-g, i CMIP5 MMM, 1284	  
and j CMIP3 MMM. Also given in a and f is the pattern correlation of GPCP with 1285	  
CMAP, and in b-e and g-j are the model pattern correlations with GPCP over the region 1286	  
50oE-180oE, 0o-50oN. The units are pentad (Pentad 1 = January 1-5). Note the difference 1287	  
in scale for the onset vs. peak phases. GPCP and CMAP data are from 1979-2007 and the 1288	  
model data is from 1961-1999 1289	  
 1290	  
Fig. 7 Monsoon withdrawal pentad a GPCP, b MIROC5, c echo-g, d CMIP5 MMM, and 1291	  
e CMIP3 MMM. Monsoon duration f GPCP, g CNRM-CM5, h inm-cm3.0, i CMIP5 1292	  
MMM, and j CMIP3 MMM. Also given in a and f is the pattern correlation of GPCP 1293	  
with CMAP, and in b-e and g-j are the model pattern correlations with GPCP over the 1294	  
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region 50oE-180oE, 0o-50oN. For withdrawal the units are pentad (Pentad 1 = January 1-1295	  
5). For duration the units are the number of pentads based on (withdrawal) minus (onset) 1296	  
pentad. GPCP and CMAP data are from 1979-2007 and the model data is from 1961-1297	  
1999 1298	  
 1299	  
Fig. 8 Scatterplot of the pattern correlation with observations of the simulated pentad of 1300	  
monsoon onset vs. a the pattern correlation with observations of the simulated pentad of 1301	  
monsoon peak, b the pattern correlation with observations of the simulated pentad of 1302	  
monsoon withdrawal, and c the pattern correlation with observations of the simulated 1303	  
number of pentads of monsoon duration. d Scatterplot of the Monsoon Domain Hit Rate 1304	  
vs. the Monsoon Domain Threat Score. In a-d the skill is with respect to GPCP for the 1305	  
region 50oE-180oE, 0o-50oN 1306	  
 1307	  
Fig. 9 a The ENSO-monsoon relationship skill is given by the lag 0 correlation between 1308	  
interannual JJAS anomalies of AIR and Niño3.4 SST. The AIR is for land-only 1309	  
gridpoints over 65oE-95oE, 7oN-30oN. The results are given for the Rajeevan rainfall data 1310	  
vs. HadISST SST (1961-1999; black), GPCP rainfall vs. SST used in the NCEP-NCAR 1311	  
Reanalysis (1979-2007; violet), CMIP5 models (1961-1999; red), and the CMIP3 models 1312	  
(1961-1999; green). The thick black dashed line is the 5% significance level assuming 1313	  
each year is independent for 37 degrees of freedom. b The AIR-Niño3.4 SST correlations 1314	  
in a are plotted vs. the pattern correlations of the interannual JJAS precipitation 1315	  
anomalies (mm day-1) from linear regression with JJAS Niño3.4 SST anomalies (see Fig. 1316	  
10). The pattern correlations are calculated with respect to GPCP over the region 60oE-1317	  
100oE, 0o-30oN 1318	  
 1319	  
Fig. 10 Interannual JJAS precipitation anomalies (mm day-1) from linear regression with 1320	  
JJAS Niño3.4 SST anomalies a Rajeevan rainfall data vs. HadISST SST (1961-1999), b 1321	  
GPCP rainfall vs. SST used in the NCEP-NCAR Reanalysis (1979-2007), c IPSL-1322	  
CM5A-MR, d FGOALS-s2, e CMIP5 MMM, and f CMIP3 MMM. The regressions are 1323	  
scaled by one standard deviation of the Niño3.4 SST anomalies and are thus consistent 1324	  
with anomalies during El Niño. c and d are the models that span the range of the AIR-1325	  
Niño3.4 SST correlations from the CMIP5 and CMIP3 models (see Figure 9a). In panels 1326	  
a-d the first (or only) value is the correlation of AIR-Niño3.4 SST. The last value in b is 1327	  
the pattern correlation of GPCP with CMAP for the interannual JJAS precipitation 1328	  
anomalies, and in c-f the last (or only) value is the model pattern correlation with GPCP 1329	  
for the interannual JJAS precipitation anomalies. The skill metrics are calculated over the 1330	  
region 60oE-100oE, 0o-30oN. The Rajeevan rainfall, the HadISST SST, and the model 1331	  
data is for 1961-1999. The GPCP, CMAP and NCEP-NCAR Reanalysis SST data are for 1332	  
1979-2007 1333	  
 1334	  
Fig. 11 Interannual East Asian summer monsoon JJA 850hPa wind anomalies and 1335	  
precipitation anomalies from linear regression with the revised JJA Wang-Fan 850hPa 1336	  
zonal wind index for a JRA25/GPCP, b CMIP5 MMM, c CMIP3 MMM, d gfdl cm2.0 1337	  
model, e fgoals-g1.0, f HadGEM2-ES, and g INM-CM4. d and e are the models with the 1338	  
largest and smallest 850hPa wind pattern correlations compared to JRA25 850hPa wind 1339	  
anomalies, and f and g are the models with the largest and smallest precipitation pattern 1340	  
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correlations compared to GPCP. Also given in a is the pattern correlation of JRA25 with 1341	  
NCEP/NCAR Reanalysis and GPCP with CMAP, respectively, and in b-g are the model 1342	  
pattern correlations with JRA25 and GPCP over the region 100oE-140oW, 0o-50oN. The 1343	  
units for the 850hPa wind anomalies are ms-1 and for precipitation anomalies the units are 1344	  
mm day-1. The JRA25 reanalysis, the NCEP-NCAR reanalyses, the GPCP, and CMAP 1345	  
data are for 1979-2007. The model data is for 1961-1999 1346	  
 1347	  
Fig. 12 a Scatterplot of the pattern correlation with observations of simulated JJA 850hPa 1348	  
wind anomalies vs. the pattern correlation with observations of simulated JJA 1349	  
precipitation anomalies over East Asia. The skill is relative to JRA25 and GPCP over the 1350	  
region 100oE-140oE, 0o-50oN. b Scatterplot of the pattern correlation with observations of 1351	  
simulated JJA 850hPa wind anomalies vs. the pattern correlation with observations of the 1352	  
simulated JJA 850hPa wind climatology. The skill is with respect to JRA25 on the x-axis, 1353	  
and with respect to ERA40 on the y-axis. c Scatterplot of the pattern correlation with 1354	  
GPCP of simulated JJA precipitation anomalies vs. the pattern correlation with 1355	  
observations of the simulated JJA precipitation climatology. d Scatterplot of the pattern 1356	  
correlation with GPCP of simulated JJA precipitation anomalies over the East Asia (as in 1357	  
Figs. 12a and 12c) vs. the pattern correlation with GPCP of simulated JJAS precipitation 1358	  
anomalies over the Indian Summer Monsoon (as in Fig. 9b) 1359	  
 1360	  
Fig. 13 20-100 day bandpass filtered OLR variance for JJAS from a AVHRR (1979-1361	  
2006), b MPI-ESM-LR, c MIROC-ESM, d MIROC5, e CMIP5 MMM, and f CMIP3 1362	  
MMM. Also given in a is the pattern correlation with AVHRR OLR for 1979-1995, and 1363	  
in b-f are the model pattern correlations with AVHRR OLR (1979-2006) over the region 1364	  
40oE-180oE, 30oS-30oN. The model data is for 1961-1999 1365	  
 1366	  
Fig. 14 Lag regression of 20-100 day bandpass filtered AVHRR OLR with PC-4 for 1367	  
JJAS 1979-2006 for a Day -15 to h Day 20. The lag regressions have been scaled by one 1368	  
standard deviation of PC-4 to give units of W m-2. The pattern correlations are calculated 1369	  
with respect to Day -15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 15, and Day 20 of 1370	  
the CsEOF of Annamalai and Sperber (2005) over the region 40oE-180oE, 30oS-30oN. 1371	  
Data are plotted where the regressions are statistically significant at the 5% level, 1372	  
assuming each pentad is independent 1373	  
 1374	  
Fig. 15 Scatterplot of the pattern correlation with observations of the simulated JJAS 20-1375	  
100 day bandpass filtered OLR variance vs. the space-time pattern correlation with 1376	  
observations of the simulated JJAS BSISV life-cycle. For the variance, the observed and 1377	  
simulated skill is calculated with respect to AVHRR OLR for JJAS 1979-2006. The 1378	  
observed variance skill is calculated using the JJAS 20-100 day bandpass filtered OLR 1379	  
variance for 1979-1995. For BSISV, the skill is for the models best matching patterns 1380	  
with respect to Day -15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 15, and Day 20 of 1381	  
the CsEOF given in Annamalai and Sperber (2005). The observed (1979-2006) and 1382	  
simulated BSISV life-cycle is recovered from linear regression with PC-4 obtained by 1383	  
projecting 20-100 day bandpass filtered OLR onto the Day 0 CsEOF pattern from 1384	  
Annamalai and Sperber (2005). The skill scores are calculated over the region 40oE-1385	  
180oE, 30oS-30oN 1386	  
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 1387	  
Fig. 16 As Fig. 14, but for MIROC5 20-100 day bandpass filtered JJAS OLR (1961-1388	  
1999) 1389	  
 1390	  
Fig. 17 As Fig. 14, but for the CMIP5 MMM. For each time lag, and at each gridpoint, 1391	  
the average anomaly is plotted if more than half of the models have a statistically 1392	  
significant convective anomaly, irrespective of sign 1393	  
 1394	  
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Fig. 1 a-e JJAS precipitation rate climatology from a GPCP, b CNRM-CM5, c MIROC-ESM, d CMIP5 
MMM, and e CMIP3 MMM. Also given in a is the pattern correlation of GPCP with CMAP, and in b-e are 
the model pattern correlations with GPCP over the region 40oE-160oE, 20oS-50oN. f (CMAP) minus (GPCP), 
g-j as b-e but for (model) minus (GPCP). The units are (mm day-1). GPCP and CMAP data is from 
1979-2007 and the model data is from 1961-1999 

d) CMIP5 MMM 0.90 

c) MIROC-ESM 0.62 

b) CNRM-CM5 0.85 

a) GPCP (1979-2007) 0.93 

e) CMIP3 MMM 0.86 

i) CMIP5 MMM – GPCP 

h) MIROC-ESM – GPCP 

g) CNRM-CM5 – GPCP 

f) CMAP – GPCP (1979-2007) 

j) CMIP3 MMM – GPCP 
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Fig. 2 a-e JJAS 850hPa wind climatology from a ERA40, b CNRM-CM5, c pcm1, d CMIP5 MMM, and e 
CMIP3 MMM. Also given in a is the pattern correlation of ERA40 with JRA25, and in b-e are the model 
pattern correlations with ERA40 over the region 40oE-160oE, 20oS-50oN. (f) (JRA25) minus (ERA40), g-j as 
b-e but for (model) minus (ERA40). The units are (ms-1). ERA40 and the model data are from 1961-1999, 
and JRA25 data is from 1979-2007 

d) CMIP5 MMM 0.98 

c) pcm1 0.79 

b) CNRM-CM5 0.97 

a) ERA40 (1961-1999) 0.99 

e) CMIP3 MMM 0.97 

i) CMIP5 MMM – ERA40 

h) pcm1 – ERA40 

g) CNRM-CM5 – ERA40 

f) JRA25 – ERA40 

j) CMIP3 MMM – ERA40 
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Fig. 3 Scatterplot of the pattern correlation with observations of simulated JJAS 850hPa wind climatology 
vs. the pattern correlation with observations of simulated JJAS precipitation climatology. The skill is relative 
to ERA40 and GPCP over the region 40oE-160oE, 20oS-50oN 
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Fig. 4 a-f Annual cycle climatology for rainfall rate averaged between 70oE-90oE from a GPCP, b CMAP, c 
MIROC5, d csiro-mk3.5, e CMIP5 MMM, and f CMIP3 MMM. Also given in b-f is the pattern correlation 
with GPCP over the region 10oS-30oN, for May-September (the dashed region in a). The units are (mm 
day-1). g Models stratified by their pattern correlation with GPCP. GPCP and CMAP data are from 
1979-2007 and the model data is from 1961-1999 

g)  

e) CMIP5 MMM 0.67 

c) MIROC5 0.78 

a) GPCP (1979-2007) 0.89 

f) CMIP3 MMM 

d) csiro-mk3.5 

b) CMAP (1979-2007) 

0.17 

0.66 



Fig. 5 The relative rainfall rate over the Bay of Bengal (85oE-90oE, 7.5oN-20oN) from GPCP data. The 5 mm 
day-1 threshold is used to define the pentads of onset and withdrawal of the monsoon. To calculate the 
relative rainfall rate, the pentad time series is smoothed with a five pentad running mean. The January mean 
rainfall is then removed from each pentad, resulting in the relative rainfall rate. See Section 4.2 for more 
details  
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Fig. 6 Monsoon onset pentad a GPCP, b gfdl cm2.0, c inm-cm 3.0, d CMIP5 MMM, and e CMIP3 
MMM. Monsoon peak pentad f GPCP, g MIROC5, h echo-g, i CMIP5 MMM, and j CMIP3 MMM. 
Also given in a and f is the pattern correlation of GPCP with CMAP, and in b-e and g-j are the model 
pattern correlations with GPCP over the region 50oE-180oE, 0o-50oN. The units are pentad (Pentad 1 = 
January 1-5). Note the difference in scale for the onset vs. peak phases. GPCP and CMAP data are from 
1979-2007 and the model data is from 1961-1999 
	  

d) CMIP5 MMM 0.66 

c) inm-cm3.0 -0.13 

b) gfdl cm2.0 0.72 

a) GPCP (1979-2007) 0.75 

e) CMIP3 MMM 0.51 

i) CMIP5 MMM 0.79 

h) echo-g 0.04 

g) MIROC5 0.78 

f) GPCP (1979-2007) 0.83 

j) CMIP3 MMM 0.73 
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Fig. 7 Monsoon withdrawal pentad a GPCP, b MIROC5, c echo-g, d CMIP5 MMM, and e CMIP3 MMM. 
Monsoon duration f GPCP, g CNRM-CM5, h inm cm3.0, i CMIP5 MMM, and j CMIP3 MMM. Also given 
in a and f is the pattern correlation of GPCP with CMAP, and in b-e and g-j are the model pattern 
correlations with GPCP over the region 50oE-180oE, 0o-50oN. For withdrawal the units are pentad (Pentad 1 
= January 1-5). For duration the units are the number of pentads based on (withdrawal) minus (onset) pentad. 
GPCP and CMAP data are from 1979-2007 and the model data is from 1961-1999 
	  

d) CMIP5 MMM 0.79 

c) echo-g 0.37 

b) MIROC5 0.85 

a) GPCP (1979-2007) 0.83 

e) CMIP3 MMM 0.71 

i) CMIP5 MMM 0.60 

h) inm-cm3.0 -0.06 

g) CNRM-CM5 0.66 

f) GPCP (1979-2007) 0.67 

j) CMIP3 MMM 0.38 
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Fig. 8 Scatterplot of the pattern correlation with observations of the simulated pentad of monsoon onset vs. a 
the pattern correlation with observations of the simulated pentad of monsoon peak, b the pattern correlation 
with observations of the simulated pentad of monsoon withdrawal, and c the pattern correlation with 
observations of the simulated number of pentads of monsoon duration. d Scatterplot of the Monsoon Domain 
Hit Rate vs. the Monsoon Domain Threat Score. In a-d the skill is with respect to GPCP for the region 
50oE-180oE, 0o-50oN	  
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Fig. 9 a The ENSO-monsoon relationship skill is given by the lag 0 correlation between interannual JJAS 
anomalies of AIR and NINO3.4 SST. The AIR is for land-only gridpoints over 65oE-95oE, 7oN-30oN. The 
results are given for the Rajeevan rainfall data vs. HadISST SST (1961-1999; black), GPCP rainfall vs. SST 
used in the NCEP-NCAR Reanalysis (1979-2007; violet), CMIP5 models (1961-1999; red), and the CMIP3 
models (1961-1999; green). The thick black dashed line is the 5% significance level assuming each year is 
independent for 37 degrees of freedom. b The AIR-NINO3.4 SST correlations in a are plotted vs. the pattern 
correlations of the interannual JJAS precipitation anomalies (mm day-1) from linear regression with JJAS 
NINO3.4 SST anomalies (see Fig. 10). The pattern correlations are calculated with respect to GPCP over the 
region 60oE-100oE, 0o-30oN	  
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Fig. 10 Interannual JJAS precipitation anomalies (mm day-1) from linear regression with JJAS NINO3.4 SST 
anomalies a Rajeevan rainfall data vs. HadISST SST (1961-1999), b GPCP rainfall vs. SST used in the 
NCEP-NCAR Reanalysis (1979-2007), c IPSL-CM5A-MR, d FGOALS-s2, e CMIP5 MMM, and f CMIP3 
MMM. The regressions are scaled by one standard deviation of the NINO3.4 SST anomalies and are thus 
consistent with anomalies during El Nino. c and d are the models that span the range of the AIR-NINO3.4 
SST correlations from the CMIP5 and CMIP3 models (see Figure 9a). In panels a-d the first (or only) value 
is the correlation of AIR-NINO3.4 SST. The last value in b is the pattern correlation of GPCP with CMAP 
for the interannual JJAS precipitation anomalies, and in c-f the last (or only) value is the model pattern 
correlation with GPCP for the interannual JJAS precipitation anomalies. The skill metrics are calculated over 
the region 60oE-100oE, 0o-30oN. The Rajeevan rainfall, the HadISST SST, and the model data is for 
1961-1999. The GPCP, CMAP and NCEP-NCAR Reanalysis SST data are for 1979-2007	  
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Fig. 11 Interannual East Asian summer monsoon JJA 850hPa wind anomalies and precipitation anomalies 
from linear regression with the revised JJA Wang-Fan 850hPa zonal wind index for a JRA25/GPCP, b 
CMIP5 MMM, c CMIP3 MMM, d gfdl cm2.0 model, e fgoals-g1.0, f HadGEM2-ES, and g INM-CM4. d 
and e are the models with the largest and smallest 850hPa wind pattern correlations compared to JRA25 
850hPa wind anomalies, and f and g are the models with the largest and smallest precipitation pattern 
correlations compared to GPCP. Also given in a is the pattern correlation of JRA25 with NCEP/NCAR 
Reanalysis and GPCP with CMAP, respectively, and in b-g are the model pattern correlations with JRA25 
and GPCP over the region 100oE-140oW, 0o-50oN. The units for the 850hPa wind anomalies are ms-1 and for 
precipitation anomalies the units are mm day-1. The JRA25 reanalysis, the NCEP-NCAR reanalyses, the 
GPCP, and CMAP data are for 1979-2007. The model data is for 1961-1999	  
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Fig. 12 a Scatterplot of the pattern correlation with observations of simulated JJA 850hPa wind anomalies 
vs. the pattern correlation with observations of simulated JJA precipitation anomalies over East Asia. The 
skill is relative to JRA25 and GPCP over the region 100oE-140oE, 0o-50oN. b Scatterplot of the pattern 
correlation with observations of simulated JJA 850hPa wind anomalies vs. the pattern correlation with 
observations of the simulated JJA 850hPa wind climatology. The skill is with respect to JRA25 on the x-axis, 
and with respect to ERA40 on the y-axis. c Scatterplot of the pattern correlation with GPCP of simulated JJA 
precipitation anomalies vs. the pattern correlation with observations of the simulated JJA precipitation 
climatology. d Scatterplot of the pattern correlation with GPCP of simulated JJA precipitation anomalies 
over the East Asia (as in Figs. 12a and 12c) vs. the pattern correlation with GPCP of simulated JJAS 
precipitation anomalies over the Indian Summer Monsoon (as in Fig. 9b)	  
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Fig. 13 20-100 day bandpass filtered OLR variance for JJAS from a AVHRR (1979-2006), b MPI-ESM-LR, c 
MIROC-ESM, d MIROC5, e CMIP5 MMM, and f CMIP3 MMM. Also given in a is the pattern correlation with 
AVHRR OLR for 1979-1995, and in b-f are the model pattern correlations with AVHRR OLR (1979-2006) over the 
region 40oE-180oE, 30oS-30oN. The model data is for 1961-1999.	  
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Fig. 14 Lag regression of 20-100 day bandpass filtered AVHRR OLR with PC-4 for JJAS 1979-2006 for a Day -15 
to h Day 20. The lag regressions have been scaled by one standard deviation of PC-4 to give units of W m-2. The 
pattern correlations are calculated with respect to Day -15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 15, and 
Day 20 of the CsEOF of Annamalai and Sperber (2005) over the region 40oE-180oE, 30oS-30oN. Data are plotted 
where the regressions are statistically significant at the 5% level, assuming each pentad is independent	  
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Fig. 15 Scatterplot of the pattern correlation with observations of the simulated JJAS 20-100 day bandpass 
filtered OLR variance vs. the space-time pattern correlation with observations of the simulated JJAS BSISV 
life-cycle. For the variance, the observed and simulated skill is calculated with respect to AVHRR OLR for 
JJAS 1979-2006. The observed variance skill is calculated using the JJAS 20-100 day bandpass filtered OLR 
variance for 1979-1995. For BSISV, the skill is for the models best matching patterns with respect to Day 
-15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 15, and Day 20 of the CsEOF given in Annamalai and 
Sperber (2005). The observed (1979-2006) and simulated BSISV life-cycle is recovered from linear 
regression with PC-4 obtained by projecting 20-100 day bandpass filtered OLR onto the Day 0 CsEOF 
pattern from Annamalai and Sperber (2005). The skill scores are calculated over the region 40oE-180oE, 
30oS-30oN	  
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Fig. 16 As Fig. 14, but for MIROC5 20-100 day bandpass filtered JJAS OLR (1961-1999)	  

d) Day 0 0.83 

c) Day -5  0.83 

b) Day -10 0.29 

a) Day -15 0.51 

h) Day 20 

g) Day 15 

f) Day 10 

e) Day 5 0.57 

0.50 

0.76 

0.72 



-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5

40E 60E 80E 100E 120E 140E 160E 180
30S

10S

10N

30N

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5

40E 60E 80E 100E 120E 140E 160E 180
30S

10S

10N

30N

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5

40E 60E 80E 100E 120E 140E 160E 180
30S

10S

10N

30N

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5

40E 60E 80E 100E 120E 140E 160E 180
30S

10S

10N

30N

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5

40E 60E 80E 100E 120E 140E 160E 180
30S

10S

10N

30N

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5

40E 60E 80E 100E 120E 140E 160E 180
30S

10S

10N

30N

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5

40E 60E 80E 100E 120E 140E 160E 180
30S

10S

10N

30N

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5

40E 60E 80E 100E 120E 140E 160E 180
30S

10S

10N

30N

Fig. 17 As Fig. 14, but for the CMIP5 MMM. For each time lag, and at each gridpoint, the average anomaly is 
plotted if more than half of the models have a statistically significant convective anomaly, irrespective of sign	  
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